Skip to main content

Non-rigid Groupwise Image Registration for Motion Compensation in Quantitative MRI

  • Conference paper
Biomedical Image Registration (WBIR 2014)

Abstract

Quantitative magnetic resonance imaging (qMRI) aims to extract quantitative parameters representing tissue properties from a series of images by modeling the image acquisition process. This requires the images to be spatially aligned but, due to patient motion, anatomical structures in the consecutive images may be misaligned. In this work, we propose a groupwise non-rigid image registration method for motion compensation in qMRI. The method minimizes a dissimilarity measure based on principal component analysis (PCA), exploiting the fact that intensity changes can be described by a low-dimensional acquisition model. Using an unbiased groupwise formulation of the registration problem, there is no need to choose a reference image as in conventional pairwise approaches. The method was evaluated on three applications: modified Look-Locker inversion recovery T 1 mapping in a porcine myocardium, black-blood variable flip-angle T 1 mapping in the carotid artery region, and apparent diffusion coefficient (ADC) mapping in the abdomen. The method was compared to a conventional pairwise alignment that uses a mutual information similarity measure. Registration accuracy was evaluated by computing precision of the estimated parameters of the qMRI model. The results show that the proposed method performs equally well or better than an optimized pairwise approach and is therefore a suitable motion compensation method for a wide variety of qMRI applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tofts, P.: Quantitative MRI of the Brain: Measuring Changes Caused by Disease. John Wiley & Sons (2003)

    Google Scholar 

  2. Mangin, J.F., et al.: Distortion correction and robust tensor estimation for MR diffusion imaging. Med. Image Anal. 6, 191–198 (2002)

    Article  Google Scholar 

  3. Bron, E., et al.: Image registration improves human knee cartilage T1 mapping with delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). Eur. Radiol. 23, 246–252 (2013)

    Article  Google Scholar 

  4. Metz, C.T., et al.: Nonrigid registration of dynamic medical imaging data using nD+t B-splines and a groupwise optimization approach. Med. Image Anal. 15, 238–249 (2010)

    Article  Google Scholar 

  5. Marsland, S., et al.: A minimum description length objective function for groupwise non-rigid image registration. Image Vis. Comput. 26, 333–346 (2008)

    Article  Google Scholar 

  6. Wachinger, C., et al.: Simultaneous registration of multiple images: Similarity metrics and efficient optimization. IEEE Trans. Pattern Anal. Mach. Intell. 7, 667–674 (2012)

    Google Scholar 

  7. Huizinga, W., et al.: Groupwise registration in diffusion weighted MRI for correcting subject motion and eddy current distortions using a PCA based dissimilarity metric. In: Computational Diffusion MRI and Brain Connectivity - MICCAI Workshops, pp. 163–174 (2013)

    Google Scholar 

  8. Miller, E., et al.: Learning from one example through shared densities on transforms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 464–471 (2000)

    Google Scholar 

  9. Hamy, V., et al.: Respiratory motion correction in dynamic MRI using robust data decomposition registration - Application to DCE-MRI. Med. Image Anal. 18, 301–313 (2013)

    Article  Google Scholar 

  10. Rueckert, D., et al.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imag. 18, 712–721 (1999)

    Article  Google Scholar 

  11. Messroghli, D.R., et al.: Modified Look-Locker Inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn. Reson. Med. 52, 141–146 (2004)

    Article  Google Scholar 

  12. Coolen, B.F., et al.: 3D carotid wall T1 quantification using variable flip angle 3D merge with steady-state recovery. In: Proc. Annu. Meet. ISMRM (2013)

    Google Scholar 

  13. Klein, S., et al.: Adaptive stochastic gradient descent optimization for image registration. Int. J. Comput. Vis. 81, 227–239 (2009)

    Article  Google Scholar 

  14. Klein, S., et al.: Elastix: a toolbox for intensity based medical image registration. IEEE Trans. Med. Imag. 29, 196–205 (2010)

    Article  Google Scholar 

  15. Balci, S., et al.: Free-form B-spline deformation model for groupwise registration. In: Proc. Stat. Regis. Workshop - MICCAI, pp. 23–30 (2007)

    Google Scholar 

  16. Guyader, J.M., Bernardin, L., Douglas, N., Poot, D., Niessen, W., Klein, S.: Influence of image registration on adc images computed from free-breathing diffusion mris of the abdomen. In: SPIE Medical Imaging (2014)

    Google Scholar 

  17. Sijbers, J., et al.: Parameter estimation from magnitude MR images. Int. J. Imag. Syst. Tech. 10, 109–114 (1999)

    Article  Google Scholar 

  18. Cavassila, et al.: CramĂ©r-Rao bounds: an evaluation tool for quantitation. NMR Biomed. 14, 278–283 (2001)

    Article  Google Scholar 

  19. Rao, C.R.: Minimum variance and the estimation of several parameters. Proc. Cambridge Phil. Soc. 43, 280–283 (1946)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Huizinga, W. et al. (2014). Non-rigid Groupwise Image Registration for Motion Compensation in Quantitative MRI. In: Ourselin, S., Modat, M. (eds) Biomedical Image Registration. WBIR 2014. Lecture Notes in Computer Science, vol 8545. Springer, Cham. https://doi.org/10.1007/978-3-319-08554-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08554-8_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08553-1

  • Online ISBN: 978-3-319-08554-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics