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Abstract

We develop a sound, complete and practically implementable tableau-

based decision method for constructive satisfiability testing and model

synthesis for the fragment ATL+ of the full Alternating time temporal logic

ATL
∗. The method extends in an essential way a previously developed

tableau-based decision method for ATL and works in 2EXPTIME, which

is the optimal worst-case complexity of the satisfiability problem for ATL+.

We also discuss how suitable parameterizations and syntactic restrictions

on the class of input ATL
+ formulae can reduce the complexity of the

satisfiability problem.

keywords: alternating-time temporal logics, ATL+, decision procedure, model
synthesis, satisfiability, tableaux

1 Introduction

The Alternating-time temporal logic ATL∗ was introduced and studied in [1] as
a multi-agent extension of the branching time temporal logic CTL∗, where the
path quantifiers are generalized to “strategic quantifiers”, indexed with coali-
tions of agents A and ranging existentially over collective strategies of A and
then universally over all paths (computations) enabled by the selected collec-
tive strategy of A. ATL∗ was proposed as logical framework for specification and
verification of properties of open systems modelled as concurrent game models,
in which all agents effect state transitions collectively, by taking simultaneous
actions at each state. The language of ATL∗ allows expressing statements of
the type “Coalition A has a collective strategy to guarantee the satisfaction of
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the objective Φ on every play enabled by that strategy”. The syntactic fragment
ATL of ATL∗ allows only state formulae, where all occurrences of temporal op-
erators must be immediately preceded by strategic quantifiers. The fragment
ATL+ of ATL∗ extends ATL by allowing any Boolean combinations of ATL ob-
jectives in the scope of a strategic quantifier. It is considerably more expressive
than ATL, which is reflected in the high – 2EXPTIME – worst-case complexity
lower bound of the satisfiability problem for ATL+ (inherited from the lower
bound for CTL+, see [10]) as opposed to the EXPTIME-completeness of the
satisfiability problem for ATL [5, 13]. The matching 2EXPTIME upper bound
is provided by the automata-based method for deciding satisfiability in the full
ATL∗, developed in [12].

The contribution of this paper is the development of a sound, complete and
terminating tableau-based decision method for constructive satisfiability testing
of ATL+ formulae. We also claim that our approach is intuitive and conceptually
simple, as well as practically implementable and even manually usable, despite
the inherently high worst-case complexity of the problem. The tableau method
presented here is based on the general methodology going back to [11] (for PDL),
[14] (for LTL) and [2, 6] (for CTL), further adapted for ATL in [9] to which the
reader is referred for more details. A recent implementation of such a method
is reported in [4]. The tableau method for ATL+ is an essential extension of the
one for ATL, as it has to deal with much more complex (and computationally
expensive) path objectives that can be assigned to the agents. It is also rather
different from the above mentioned automata-based method in [12].

The paper is structured as follows. In Section 2 we offer brief technical
preliminaries on concurrent game models, syntax and semantics of ATL∗ and
ATL+. Section 3 develops the technical machinery needed for the presentation
of the tableau method itself in Section 4. In Section 5 we prove the soundness
of the tableau method, whereas in Section 6 we prove its completeness and
demonstrate with examples how satisfying models can be extracted from the
final open tableau. We also estimate the worst-case complexity of the procedure.
In Section 7 we offer a brief comparison with the automata-based method in [12].

2 Preliminaries

We assume that the reader has basic familiarity with the branching time logic
CTL∗, see e.g. [7]. Also, basic knowledge on ATL∗ [1] and the tableaux-based
decision procedure for ATL in [9], on which this paper builds, would be beneficial.

2.1 Concurrent game models, strategies and co-strategies

For technical reasons that will become clearer later in the soundness and the
completeness proofs, we define a more general, non-deterministic version of the
concurrent game structure with respect to [1]. For the moment, we can say that
the basic idea is avoiding several definitions of the notion of Realization Witness
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Trees for very similar structures (models, tableaux and Hintikka structures).
Note that the very notion of tableau will be defined as a non-deterministic
labelled CGS (see the beginning of Section 4).

Notation: given a set X , we denote the power set of X by P(X).

Definition 2.1. A (non-deterministic) concurrent game structure (CGS) is a
tuple

S = (A, St, {Acta}a∈A, {acta}a∈A, out)

comprising:

• a finite, non-empty set of players (agents) A = {1, . . . , k}

• a non-empty set of states St,

• a set of actions Acta 6= ∅ for each a ∈ A.

For any A ⊆ A we denote ActA :=
∏

a∈A Acta and use σA to denote a tuple
from ActA. In particular, ActA is the set of all possible action profiles in
S.

• for each a ∈ A, a map acta : St → P(Acta) \ {∅} defining for each state s
the actions available to a at s,

• a transition relation out ⊆ St× ActA × St.

Whenever 〈s, σA, s
′〉 ∈ out, for σA = 〈σ1, . . . , σk〉, then σa ∈ acta(s) for

every a ∈ A. Given a pair 〈s, σA〉, the set of states s′ ∈ St such that
〈s, σA, s′〉 ∈ out is denoted out(s, σA) and called the set of successor (out-
come) states of σA at s.

When out(s, σA) is a singleton, the CGS is said to be deterministic. In
such cases, by a slight abuse of notation we will use out(s, σA) to denote
a state s′ rather than the singleton {s′}.

Definition 2.2. 1. Given a set of formulae (of some language) Θ, a CGS S
with a state space St is state-labelled by Θ if there is a mapping l : St →
P(Θ) assigning to every state in S a set of formulae from Θ, called the
label of that state.

2. A concurrent game model (CGM) is a deterministic CGS state-labelled
by a fixed set of atomic propositions Prop, i.e., a tuple
M = (A, St, {Acta}a∈A, {acta}a∈A, out,Prop, L) where

• (A, St, {Acta}a∈A, {acta}a∈A, out) is a deterministic CGS,

• Prop is a set of atomic propositions, and

• L : St → P(Prop) is a (state-)labelling function.

Concurrent game models represent multi-agent discrete transition systems
that function as follows. At any moment the system is in a given state, where
each agent selects an action from those available to him at that state. All
agents execute their actions synchronously and the combination of these actions
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together with the current state determines a transition to a unique successor
state in the model. A play in a CGM is an infinite sequence of subsequent
successor states, i.e., an infinite sequence s0s1... ∈ Stω of states such that for
each i ≥ 0 there exists an action profile σA = 〈σ1, . . . , σk〉 such that out(si, σA) =
si+1. A history is a finite prefix of a play. We denote by PlaysM and HistM
respectively the set of plays and set of histories in a CGM M. For a state s ∈ St

we define PlaysM(s) and HistM(s) as the set of plays and set of histories with
initial state s. Given a sequence of states λ, we denote by λ0 its initial state,
by λi its (i + 1)th state, by λ≤i the prefix λ0...λi of λ and by λ≥i the suffix
λiλi+1... of λ. When λ = λ0...λℓ is finite, we say that it has length ℓ and write
|λ| = ℓ. Further, we put last(λ) = λℓ.

For any coalition A ⊆ A, a given CGM M and state s ∈ St, an A-co-action
at s in M is a mapping ActcA : ActA → ActA\A that assigns to every collective
action of A at the state s a collective action at s for the complementary coalition
A \A.

We use actA(s) to denote the set of all A-actions that can be played by the
coalition A at state s, i.e. actA(s) = Πa∈Aacta(s). We also use actcA(s) to denote
the set of all A-co-actions available at state s and σcA for an element of this set.

A (perfect recall) strategy for an agent a in M is a mapping Fa : HistM →
Acta such that for all h ∈ HistM we have Fa(h) ∈ acta(last(h)). Intuitively, it
assigns an admissible action for agent a after any history h of the game. We
denote by StratM(a) the set of all strategies of agent a. A (collective) strategy
of a set (coalition) of agents A ⊆ A is a tuple (Fa)a∈A of strategies, one for
each agent in A. When A = A this is called a strategy profile. We denote by
StratM(A) the set of collective strategies of coalition A. A play λ ∈ PlaysM
is consistent with a collective strategy FA ∈ StratM(A) if for every i ≥ 0 there
exists an action profile σA = 〈σ1, . . . , σk〉 such that out(λi, σA) = λi+1 and
σa = Fa(λ≤i) for all a ∈ A. The set of plays with initial state s that are
consistent with FA is denoted PlaysM(s, FA).

Likewise, a (perfect-recall) A-co-strategy in M for a coalition of agents A
(possibly reduced to just one agent a) is a mapping FA\A : HistM×StratM(A) →
ActA\A that assigns to each h ∈ HistM and every collective strategy FA ∈
StratM(A) an A-co-action FA\A(h, FA) ∈ actcA(last(h)).

2.2 The logic ATL* and fragments

The logic ATL∗ is a multi-agent extension of CTL∗ with strategic quantifiers
〈〈A〉〉 indexed with coalitions A of agents. There are two types of formulae in
ATL∗: state formulae, that are evaluated at states, and path formulae, that are
evaluated on plays. To simplify the presentation we will work with formulae in
negation normal form over a fixed set Prop of atomic propositions and primitive
temporal operators Always � and Until U . The syntax of the full language
ATL∗ and its fragments ATL+ and ATL can then be defined as follows, where

4



l ∈ Prop∪{¬p | p ∈ Prop} is a literal, A is a fixed finite set of agents and A ⊆ A:

State formulae: ϕ := l | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | 〈〈A〉〉Φ | [[A]]Φ (1)

ATL∗-path formulae: Φ := ϕ | ©Φ | �Φ | (ΦUΦ) | (Φ ∨ Φ) | (Φ ∧ Φ) (2)

ATL+-path formulae: Φ := ϕ | ©ϕ | �ϕ | (ϕUϕ) | (Φ ∨Φ) | (Φ ∧Φ) (3)

ATL-path formulae: Φ := ©ϕ | �ϕ | (ϕUϕ) (4)

Note that the state formulae have the same definition but define different
sets in all 3 cases. To keep the notation lighter, we will list the members of the
set A in 〈〈A〉〉 without using {}. When the length of a formula is measured, A will
be assumed given by a bit vector. Parentheses will be omitted whenever safe,
but they will be important when conjunctions and disjunctions are composed.

Hereafter, we use ϕ, ψ, η to denote arbitrary state formulae and Φ, Ψ to
denote path formulae. By an ATL+ formula we will mean by default a state
formula of ATL+; likewise for ATL. We define ⊤ := p ∨ ¬p, ⊥ := ¬⊤ and the
temporal operators Sometime ♦ by ♦ϕ := ⊤Uϕ and Release R by ψRϕ :=
�ϕ∨ ϕU(ϕ ∧ ψ). Note, that 〈〈A〉〉ψRϕ and [[A]]ψRϕ are ATL+ state formulae.

CTL∗ can be regarded as the fragment of ATL∗ where 〈〈∅〉〉 represents the
path quantifier ∀ and 〈〈A〉〉 represents ∃. The semantics of ATL∗ (inherited by
ATL+) is defined in a given CGM M, state s ∈ M and a path λ in M just like
the semantics of CTL∗, with the added clauses for the strategic quantifiers:

• M, s |= p, for any proposition p ∈ Prop, iff p ∈ L(s).

• M, s |= ¬p iff M, s 6|= p.

• M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ.

• M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ.

• M, s |= 〈〈A〉〉Φ iff there exists an A-strategy FA such that, for all compu-
tations λ consistent with FA, M, λ |= Φ.

• M, s |= [[A]]Φ iff there exists an A-co-strategy F cA such that, for all com-
putations λ consistent with F cA, M, λ |= Φ

• M, λ |= ϕ iff M, λ0 |= ϕ.

• M, λ |= ©ϕ iff M, λ≥1 |= ϕ.

• M, λ |= �ϕ iff for all positions i > 0, M, λ≥i |= ϕ.

• M, λ |= ϕUψ iff there exists a position i > 0 where M, λ≥i |= ψ and for
all positions 0 6 j < i, M, λ≥j |= ϕ.

• M, λ |= Φ ∧Ψ iff M, λ |= Φ and M, λ |= Ψ.

• M, λ |= Φ ∨Ψ iff M, λ |= Φ or M, λ |= Ψ.

Valid, satisfiable and equivalent formulae in ATL∗ are defined as usual. Here
are some important equivalences in LTL [7] and in ATL∗ [1, 8], used further:
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• �Ψ ≡ Ψ ∧©�Ψ; ΦUΨ ≡ Ψ ∨ (Φ ∧©(ΦUΨ));

• 〈〈A〉〉�Ψ ≡ Ψ∧ 〈〈A〉〉©〈〈A〉〉�Ψ; 〈〈A〉〉ΦUΨ ≡ Ψ∨ (Φ∧ 〈〈A〉〉©〈〈A〉〉ΦUΨ);

• [[A]]�Ψ ≡ Ψ ∧ [[A]]©[[A]]�Ψ; [[A]]ΦUΨ ≡ Ψ ∨ (Φ ∧ [[A]]©[[A]]ΦUΨ);

• [[A]]©ϕ ≡ ¬〈〈A〉〉©¬ϕ ≡ 〈〈∅〉〉©ϕ; 〈〈A〉〉〈〈B〉〉Φ ≡ 〈〈B〉〉Φ;

• For every state formula ϕ: 〈〈A〉〉(ϕ ∧ Ψ) ≡ ϕ ∧ 〈〈A〉〉Ψ, 〈〈A〉〉(ϕ ∨ Ψ) ≡
ϕ ∨ 〈〈A〉〉Ψ.

Remark 2.1. It is known [1] that, when restricted to ATL formulae, the semantics
above (based on perfect-recall strategies) is equivalent to the semantics based on
positional (or memoryless) strategies, where the prescribed actions only depend
on the current state, not on the whole history. This is no longer the case for
ATL+. For example, the formula 〈〈1〉〉♦(p∧〈〈1〉〉♦q) → 〈〈1〉〉(♦p∧♦q) in a 2-agents
language is valid in the semantics with perfect-recall strategies (which can be
freely composed) but not in the semantics with positional strategies (which
cannot be freely composed). Indeed, in the concurrent game model of Figure
1, the antecedent of the above implication, namely 〈〈1〉〉♦(p ∧ 〈〈1〉〉♦q), is true at
state s0 no matter what strategy – perfect-recall or positional – is considered,
whereas the consequent, namely 〈〈1〉〉(♦p ∧ ♦q), is true at s0 only with respect
to perfect-recall strategies. To be more precise, with respect to the state S0

only two cases of memoryless strategy F for player 1 are possible: F (S0) = a
and F (S0) = b. Since the strategy is positional, these actions would be applied
every time the play reaches S0, and neither of them guarantees that the play
will eventually visit both a state satisfying p and a state satisfying q. On the
other hand, a perfect-recall strategy F such that F (S0) = a and F (S0S1S0) = b
guarantees the satisfaction of the objective ♦p ∧ ♦q.

M S0

∅

S1

{p}

S2 {p}S3{q}

a, a

b, a
b, b a, b

a, a

a, a

a, a

Figure 1: A CGM

Here we assume that the semantics is based on perfect-recall strategies.
The (constructive) satisfiability decision problem for ATL+ is defined as fol-

lows:
Given a state formula ϕ in ATL+, does there exist a CGM M and a state s in

M such that M, s |= ϕ? If so, construct such a satisfying pair (M, s).

6



Remark 2.2. There are three variants of the satisfiability problem: tight, where
it is assumed that all agents in the model are mentioned in the formula, loose
where just one additional agent, not mentioned in the formula is allowed in the
model, and general, where any number of additional agents, not mentioned in
the formula, are allowed in the model. These variants are really different, but
the general satisfiability is immediately reducible to the loose satisfiability, by
adding just one extra agent a to the language. Furthermore, this extra agent can
be easily added superfluously to the formula, e.g., by adding a conjunct 〈〈a〉〉©⊤,
thus reducing loose to tight satisfiability. So, hereafter we only consider the tight
satisfiability version. For further details and discussion on this issue, see e.g.,
[13, 9].

3 Decomposition and closure of ATL+ formulae

We partition the set of ATL+ formulae into primitive and non-primitive for-
mulae. The primitive formulae are ⊤,⊥, the literals and all ATL+ successor
formulae, of the form 〈〈A〉〉 © ψ or [[A′]] © ψ, where A ⊆ A and A′ ⊂ A, each
with successor component ψ. The non-primitive formulae are classified as α-,
β- and γ-formulae. An α-formula in our syntax is a conjunction ϕ ∧ ψ with
(conjunctive) α-components ϕ and ψ, plus the formulae of the form [[A]]©ψ
whose α-components are both 〈〈∅〉〉©ψ; a β-formula is a disjunction ϕ ∨ψ with
(disjunctive) β-components ϕ and ψ. The rest of the non-primitive formulae are
classified as γ-formulae. That is, a γ-formula is one of the form [[A]]Φ or 〈〈A〉〉Φ,
where Φ is an ATL+ path formula whose main operator is not © and A 6= A.

The need of introducing the new category of γ-formulae, w.r.t. the partition
of non-primitive formulae into α- and β- classes done in [9] is the following. In
ATL each strategic quantifier is necessarily followed by a temporal operator,
and, for instance 〈〈A〉〉�ϕ can be seen as an α-formula while 〈〈A〉〉ϕUψ can be
seen as a β-formula. However, typical state formulae in ATL+ have the form
〈〈A〉〉(Φ1 ∨ Φ2), 〈〈A〉〉(Φ1 ∧ Φ2), [[A]](Φ1 ∧ Φ2),[[A]](Φ1 ∨ Φ2). Now, these four
types of formulae cannot reasonably be classified as α- or β- formulae. Note, in
particular, that the strategic quantifier 〈〈A〉〉 in general distributes neither on ∨
nor on ∧ and the same applies to [[A]]. Thus, a new category of γ-formulae is
created, containing also 〈〈A〉〉�ϕ and 〈〈A〉〉ϕUψ as special cases, and needing a
special analysis.

Thus α- and β-formulae will be decomposed in the tableau as usual, while
the case of γ-formulae 〈〈A〉〉Φ and [[A]]Φ is special and needs extra work, because
their tableau decomposition will depend on the structure of Φ.

3.1 γ-decomposition and γ-components of γ-formulae

We denote the set of ATL+ state formulae by ATL+s and the set of ATL+ path
formulae by ATL+p . We will define a γ-decomposition function dec : ATL+p →
P(ATL+s × ATL+p ) with the following intuitive meaning: for any Φ ∈ ATL+p and
pair 〈ψ,Ψ〉 ∈ dec(Φ), ψ is a state formula true at the current state and Ψ is
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a path formula expressing what must be true at the next state of a possible
play starting at the current state. Thus, the set dec(Φ) is interpreted as a
disjunction describing all possible ‘types of paths’ starting from the current
state and satisfying Φ.

We emphasize that, although the domain of dec is the whole set ATL+p , dec
will only be used to analyse Φ in the contexts 〈〈A〉〉Φ and [[A]]Φ (where Φ does
not have © as main connective), and, as we will see, its role is just auxiliary to
the rewriting of the (always quantified) γ-formulae in a special form useful to
obtain a key ty of our tableau calculus (see further Lemma 3.1).

Base cases:
⋆ dec(ϕ) = {〈ϕ,⊤〉}, dec(©ϕ) = {〈⊤, ϕ〉} for any ATL+ state formula ϕ.
The other base cases derive from the well-known LTL equivalences listed in

2.2:
⋆ dec(�ϕ) = {〈ϕ,�ϕ〉}
⋆ dec(ϕUψ) = {〈ϕ, ϕUψ〉, 〈ψ,⊤〉}.

Recursive steps:
⋆ dec(Φ1 ∧ Φ2) = dec(Φ1)⊗ dec(Φ2), where

dec(Φ1) ⊗ dec(Φ2) := {〈ψi ∧ ψj ,Ψi ∧ Ψj〉 | 〈ψi,Ψi〉 ∈ dec(Φ1), 〈ψj ,Ψj〉 ∈
dec(Φ2)}.

⋆ dec(Φ1 ∨ Φ2) = dec(Φ1) ∪ dec(Φ2) ∪ (dec(Φ1)⊕ dec(Φ2)), where
dec(Φ1)⊕ dec(Φ2) :=
{〈ψi∧ψj ,Ψi∨Ψj〉 | 〈ψi,Ψi〉 ∈ dec(Φ1), 〈ψj ,Ψj〉 ∈ dec(Φ2), Ψi 6= ⊤,Ψj 6= ⊤}.

Note that the operations ⊗ and ⊕ are associative, up to logical equivalence.

The conjunctive case should be clear: every path satisfying Φ1∧Φ2 combines
a type of path satisfying Φ1 with a type of path satisfying Φ2. To understand the
disjunctive case, note that, as it will be seen in Section 4, the construction of the
tableau is step-by-step. Therefore, for a given prestate under construction, when
we have a formula of the form 〈〈A〉〉(Φ1 ∨ Φ2), where, for instance Φ1 = �ϕ1

and Φ2 = �ϕ2, we do not know in advance which of �ϕ1 or �Φ2 would be
completed; so it is important to keep both possibilities at the current state, if
possible. This idea is expressed by the use of dec(Φ1) ⊕ dec(Φ2) in the above
union, where we keep both disjuncts true at the present state and delay the
choice. This is why the state formulae ψi and ψj are connected by ∧ but the
path formulae Ψi and Ψj are connected by ∨. Moreover, the ⊕ operation avoids
the construction of a pair 〈ψi∧ψj ,Ψi∨Ψj〉 where either Ψi or Ψj is ⊤, because
that case would already be included in dec(Φ1) or in dec(Φ2). The three cases
for paths satisfying the disjunction Φ1 ∨Φ2 can be illustrated by the picture in
Figure 2.

Now, let ζ = 〈〈A〉〉Φ or ζ = [[A]]Φ be a γ-formula to be decomposed. Each
pair 〈ψ,Ψ〉 ∈ dec(Φ) is then converted to a γ-component γ(ψ,Ψ) as follows:

γ(ψ,Ψ) = ψ if Ψ = ⊤ (5)

γ(ψ,Ψ) = ψ ∧ 〈〈A〉〉©〈〈A〉〉Ψ if ζ is of the form 〈〈A〉〉Φ, (6)

γ(ψ,Ψ) = ψ ∧ [[A]]©[[A]]Ψ if ζ is of the form [[A]]Φ (7)

8



dec(Φ1)

•
ϕ1

Φ1

Φ1

Φ1

Φ1

Φ1

dec(Φ2)

•
ϕ2

Φ2

Φ2

Φ2

Φ2

Φ2

dec(Φ1)⊕ dec(Φ2)

•
ϕ2

ϕ1

Φ1

Φ2

Φ2

Φ1

Φ1

Figure 2: The three cases for disjunctive path objectives in a γ-formula.

Thus, the role of dec is to associate with any γ-formula ζ a set of formulae
that are simpler in some precise sense, viz. its γ-components, so that ζ is
equivalent to the disjunction of its γ-components. This key property is item 3
of the next lemma (the first two items being just auxiliary claims), and it is the
core distinction between the proposed calculus for ATL+ in this work and the
tableau calculus for ATL in [9].

Lemma 3.1. For any γ-formula Θ = 〈〈A〉〉Φ or Θ = [[A]]Φ of ATL+, the follow-
ing properties hold:

1. Φ ≡
∨

{ψ ∧©Ψ | 〈ψ,Ψ〉 ∈ dec(Φ)}.

2. 〈〈A〉〉Φ ≡
∨

{〈〈A〉〉(ψ ∧©Ψ) | 〈ψ,Ψ〉 ∈ dec(Φ)}, and respectively,

[[A]]Φ ≡
∨

{[[A]](ψ ∧©Ψ) | 〈ψ,Ψ〉 ∈ dec(Φ)}.

3. Θ ≡
∨

{γ(ψ,Ψ) | 〈ψ,Ψ〉 ∈ dec(Φ)}.

Proof. Claim 1. We will prove the claim by induction on the path formula Φ.
It is equivalent to the following property P (Φ):

For every CGM M and a play λ in it, M, λ |= Φ iff there exists
〈ψ,Ψ〉 ∈ dec(Φ) such that M, λ0 |= ψ and M, λ≥1 |= Ψ.

The base cases are Φ = ϕ, Φ = ©ϕ, Φ = �ϕ and Φ = ϕUψ. For each
of these the property P (Φ) follows immediately from the definitions of dec and
γ-components and – for the latter two cases – the well-known fixed point LTL
equivalences for the temporal operators, listed at the end of Section 2.2.

For the inductive steps there are two cases to consider:

Case 1: Φ = Φ1 ∧ Φ2. We have that:
M, λ |= Φ iff
M, λ |= Φ1 and M, λ |= Φ2, iff (by the induction hypothesis):

(i) there is 〈ψ1,Ψ1〉 ∈ dec(Φ1), such that M, λ0 |= ψ1 and M, λ≥1 |= Ψ1,
and

(ii) there is 〈ψ2,Ψ2〉 ∈ dec(Φ2) such that M, λ0 |= ψ2 and M, λ≥1 |= Ψ2.

9



These two are the case iff
M, λ0 |= ψ1 ∧ ψ2 and M, λ≥1 |= Ψ1 ∧Ψ2, iff
M, λ0 |= ψ and M, λ≥1 |= Ψ where ψ = ψ1 ∧ ψ2, Ψ = Ψ1 ∧ Ψ2 and 〈ψ,Ψ〉 ∈
dec(Φ). This completes the proof of P (Φ) for Φ = Φ1 ∧ Φ2.

Case 2: Φ = Φ1 ∨ Φ2. We have that M, λ |= Φ iff M, λ |= Φ1 or M, λ |=
Φ2. By inductive hypotheses for Φ1 and Φ2 and from the fact that dec(Φ1) ∪
dec(Φ2) ⊆ dec(Φ), we obtain the direction from left to right in property P (Φ).
For the converse direction, we only need to consider the case that does not
follow directly from the inductive hypotheses for Φ1 and Φ2, viz. when there
exists 〈ψ,Ψ〉 ∈ (dec(Φ1) ⊕ dec(Φ2)) such that M, λ0 |= ψ and M, λ≥1 |= Ψ.
In this case, ψ = ψ1 ∧ ψ2 and Ψ = Ψ1 ∨ Ψ2 for some 〈ψ1,Ψ1〉 ∈ dec(Φ1) and
〈ψ2,Ψ2〉 ∈ dec(Φ2) such that Ψ1 6= ⊤,Ψ2 6= ⊤. Suppose M, λ≥1 |= Ψ1. Since
we also have M, λ0 |= ψ1, by the inductive hypothesis for Φ1, it follows that
M, λ |= Φ1, hence M, λ |= Φ. Likewise, when M, λ≥1 |= Ψ2.

Claim 2. We will consider the case of Θ = 〈〈A〉〉Φ; the case of [[A]]Φ is
analogous. The implication from right to left of the claimed equivalence follows
from Claim 1 and the monotonicity of 〈〈A〉〉 (in sense that if Ψ |= Φ then 〈〈A〉〉Ψ |=
〈〈A〉〉Φ). For the converse direction, first recall that every ATL+ path formula Ξ
is a positive Boolean combination of sub-formulae of the types ϕ,©ϕ,�ϕ, ϕUψ
where ϕ, ψ are ATL+ state formulae. Let the set of these sub-formulae of Ξ be
S(Ξ). Now, we introduce some ad hoc notation for special sets of formulae in
S(Ξ) and their sub-formulae:

• L(Ξ) is the set of all state formulae in S(Ξ);

• N(Ξ) := {ϕ | ©ϕ ∈ S(Ξ)};

• B(Ξ) := {ϕ | �ϕ ∈ S(Ξ)};

• U(Ξ) := {ϕUψ | ϕUψ ∈ S(Ξ)};

• U1(Ξ) := {ϕ | ϕUψ ∈ S(Ξ)};

• U2(Ξ) := {ψ | ϕUψ ∈ S(Ξ)};

Without loss of generality we can assume that Φ is in a DNF over the set
of formulae in S(Φ), i.e. Φ = Φ1 ∨ . . . ∨ Φm, where each Φi is a conjunction of
formulae from S(Φ).

Now, to prove the implication from left to right, take any CGM M and
state s in it, such that M, s |= 〈〈A〉〉Φ. Take and fix any collective strategy
FA of A such that M, λ |= Φ for every play λ starting at s and consistent
with FA. We denote that set of plays by OutPath(s, FA). Then for every play
λ ∈ outM(s, σA) we have that M, λ |= Φi for some i = 1, . . . ,m. Without
restriction of generality we can assume that the set of Φi’s for which there is a
λ ∈ outM(s, σA) such that M, λ |= Φi is {Φ1, . . . ,Φn} for some n ≤ m.

Let Φi be any of these. We will associate with it a pair 〈ψi,Ψi〉 ∈ dec(Φi)
as follows. First, note that all formulae from L(Φi) and B(Φi) are true at s.
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Further, let Ei(s) be the subset of those formulae from U2(Φi) which are true
at s in M. Thus, for every play λ ∈ OutPath(s, FA) satisfying Φi the following
hold:

i) M, λ |= ϕ for each ϕ ∈ L(Φi).

ii) M, λ |= ©ϕ for each ©ϕ ∈ S(Φi).

iii) M, λ |= ϕ ∧©�ϕ for each �ϕ ∈ S(Φ).

iv) M, λ |= ψ for each ψ ∈ Ei(s).

v) M, λ |= ϕ ∧©ϕUψ for each ψ ∈ U2(Φi)− Ei(s).

Now, suppose Φi = Ψi1 ∧ . . . ∧ Ψik for some Ψi1 ∧ . . . ∧ Ψik ∈ S(Φ). Then
dec(Φi) = dec(Ψi1) ⊗ . . . ⊗ dec(Ψik). (Recall that the operations ⊗ and ⊕
are associative, up to logical equivalence, so there is no need to put paren-
theses.) Thus, for every 〈ψ,Ψ〉 ∈ dec(Φi), ψ is a conjunction of all formulae
from L(Φi) ∪ B(Φi) and, for every conjunct of Φi of the type ϕUψ, at least
one of the respective formulae coming from U1(Φi) and U2(Φi). We now select
〈ψi,Ψi〉 ∈ dec(Φi) to be the one where the conjuncts taken from U2(Φi) are
exactly those in Ei(s). Then we claim that for every play λ ∈ OutPath(s, FA)
satisfying Φi, it is the case that M, λ |= ψi∧©Ψi. Indeed, this follows from the
list of properties (i - v) above and from the definition of dec(Ψi1)⊗. . .⊗dec(Ψik).
Note further, that if Ψi above is ⊤, then M, λ |= ψi∧©Ψi for all paths λ start-
ing at s, so we can assume without affecting what follows that no Ψi above is
⊤.

After having selected such a pair 〈ψi,Ψi〉 ∈ dec(Φi) for each Φi ∈ {Φ1, . . . ,Φn},
we use these n pairs (or, those of them for which Ψi 6= ⊤) to construct the pair
〈ψ,Ψ〉 ∈ dec(Φ1)⊕. . .⊕dec(Φn) such that ψ = ψ1∧. . .∧ψn and Ψ = Ψ1∨. . .∨Ψn.

Finally, we claim that, by virtue of the construction, M, λ |= ψ ∧ ©Ψ for
every play λ ∈ OutPath(s, FA) satisfying Φ. Therefore, the strategy σA is a
witness of the truth of M, s |= 〈〈A〉〉(ψ∧©Ψ), hence M, s |=

∨

{〈〈A〉〉(ψ∧©Ψ) |
〈ψ,Ψ〉 ∈ dec(Φ)}. This completes the proof of the implication left-to-right of
Claim 2.

Claim 3. This claim follows easily from Claim 2 by noting that:

• 〈〈A〉〉(ψ ∧ ©�Ψ) ≡ ψ ∧ 〈〈A〉〉©�Ψ ≡ ψ ∧ 〈〈A〉〉©〈〈A〉〉�Ψ, because ψ
is a state formula. Note that the second equivalence is due to the fact
that the semantics of 〈〈〉〉 is based on perfect recall strategies, that can be
composed. More precisely, it essentially assumes that any strategy at s
ensuring that every successor satisfies 〈〈A〉〉�Ψ can be composed with the
family of strategies, one for every such successor s′ witnessing the truth
of 〈〈A〉〉�Ψ on all plays starting at s′, into one perfect recall strategy that
guarantees the truth of ©�Ψ on all plays starting at s. (This, in general,
cannot be done if only positional strategies are considered, as those applied
at the different successors of s may interfere with each other.)
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• Likewise, [[A]](ψ ∧©�Ψ) ≡ ψ ∧ [[A]]©�Ψ ≡ ψ ∧ [[A]]©[[A]]�Ψ.

Therefore, for each 〈ψ,Ψ〉 ∈ dec(Φ) the γ-component γ(ψ,Ψ) is equivalent to
its respective disjunct on the right hand side of Claim 2.

Example 3.1. We will use two syntactically similar, yet different, running
examples:

θ = 〈〈1〉〉(pUq ∨�q) ∧ 〈〈2〉〉(♦p ∧�¬q)

and
ϑ = 〈〈1〉〉(pUq ∨�q) ∧ [[2]](♦p ∧�¬q).

First, we consider θ. It is an α-formula with conjunctive components
θ1 = 〈〈1〉〉(pUq ∨�q) and θ2 = 〈〈2〉〉(♦p ∧�¬q).

Further, θ1 is a γ-formula of the form 〈〈A〉〉Φ where the main connective
of Φ is ∨. So, dec(θ1) = dec(pUq) ∪ dec(�q) ∪ (dec(pUq) ⊕ dec(�q)), where
dec(pUq) = {〈p, pUq〉, 〈q,⊤〉} and dec(�q) = {〈q,�q〉}.

Thus, dec(θ1) = {〈p, pUq〉, 〈q,⊤〉, 〈q,�q〉, 〈p ∧ q, pUq ∨�q〉}, hence
θ1 ≡ (p∧〈〈1〉〉©〈〈1〉〉pUq)∨q∨(q∧〈〈1〉〉©〈〈1〉〉�q)∨ (p∧q∧〈〈1〉〉©〈〈1〉〉(pUq∨�q)).

Likewise, θ2 is a γ-formula of the form 〈〈A〉〉Φ and the main connective of Φ
is ∧. So dec(θ2) = dec(♦p) ⊗ dec(�¬q), with dec(♦p) = {〈T,♦p〉, 〈p, T 〉} and
dec(�¬q) = {〈¬q,�¬q〉}.

Thus, dec(θ2) = {〈⊤ ∧ ¬q,♦p ∧�¬q〉, 〈p ∧ ¬q,⊤ ∧�¬q〉}
= {〈¬q,♦p ∧�¬q〉, 〈p ∧ ¬q,�¬q〉} and

θ2 ≡ (¬q ∧ 〈〈2〉〉©〈〈2〉〉(♦p ∧�¬q)) ∨ (p ∧ ¬q ∧ 〈〈2〉〉©〈〈2〉〉�¬q).
For ϑ, the γ-decomposition is similar, we only replace 〈〈2〉〉 by [[2]]. Thus, we

obtain
ϑ1 ≡ (p∧〈〈1〉〉©〈〈1〉〉pUq)∨(q)∨(q∧〈〈1〉〉©〈〈1〉〉�q)∨(p∧q∧〈〈1〉〉©〈〈1〉〉(pUq∨�q))
and
ϑ2 ≡ (¬q ∧ [[2]]©[[2]](♦p ∧�¬q)) ∨ (p ∧ ¬q ∧ [[2]]©[[2]]�¬q).

The closure cl(ψ) of an ATL+ state formula ψ is the least set of ATL+

formulae such that ψ,⊤,⊥ ∈ cl(ψ) and cl(ψ) is closed under taking of successor-,
α-, β- and γ-components. For any set of state formulae Γ we define

cl(Γ) :=
⋃

{cl(ψ) | ψ ∈ Γ}.

We denote by |ψ| the length of ψ and by ‖Γ‖ the cardinality of Γ.

Example 3.2. The construction of the closure of the formula θ from Example
3.1 is given in Figure 3. Each node of the tree represents an element of the
closure. Children of an interior node are respective components of the parent
formula, according to the definition of closure.

The closure of ϑ is similar to the one of θ except that every [[2]] is replaced
by 〈〈2〉〉.

Lemma 3.2. For any ATL+ state formula ϕ, ‖cl(ϕ)‖ < 2|ϕ|
2

.
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θ

θ1 = 〈〈1〉〉(pUq ∨�q)

q p ∧ 〈〈1〉〉©〈〈1〉〉pUq

p 〈〈1〉〉©〈〈1〉〉pUq

〈〈1〉〉pUq

q ∧ 〈〈1〉〉©〈〈1〉〉�q

〈〈1〉〉©〈〈1〉〉�q

〈〈1〉〉�q

p ∧ q ∧ 〈〈1〉〉©〈〈1〉〉(pUq ∨�q)

q ∧ 〈〈1〉〉©〈〈1〉〉(pUq ∨�q)

〈〈1〉〉©〈〈1〉〉(pUq ∨�q)

θ2 = 〈〈2〉〉(♦p ∧�¬q)

¬q ∧ 〈〈2〉〉©〈〈2〉〉(♦p ∧�¬q)

¬q 〈〈2〉〉©〈〈2〉〉(♦p ∧�¬q)

p ∧ ¬q ∧ 〈〈2〉〉©〈〈2〉〉�¬q

¬q ∧ 〈〈2〉〉©〈〈2〉〉�¬q

〈〈2〉〉©〈〈2〉〉�¬q

〈〈2〉〉�¬q

Figure 3: Closure of the formula θ = 〈〈1〉〉(pUq ∨�q) ∧ 〈〈2〉〉(♦p ∧�¬q)

Proof. Every formula in cl(ϕ) has length less than 2|ϕ| and is built from symbols

in ϕ, so there can be at most |ϕ|2|ϕ| = 22|ϕ| log2
|ϕ| < 2|ϕ|

2

such formulae.

The estimate above is rather crude, but ‖cl(ϕ)‖ can reach size exponential in
|ϕ|. Indeed, consider the formulae φk = 〈〈1〉〉(p1 Uq1∧(p2 Uq2∧(. . .∧pk Uqk) . . .)
for k = 1, 2, . . . and distinct p1, q1, . . . , pk, qk, . . . ∈ Prop. Then |φk| = O(k),
while the number of different γ-components of φk is 2k, hence ‖cl(φk)‖ > 2k.

3.2 Full expansions of sets of ATL+ formulae

As part of the tableau construction we will need a procedure that, for any given
finite set of ATL+ state formulae Γ, produces all “full expansions” (called in [9]
“downward saturated extensions”; see Remark 3.1) defined below.

Definition 3.1. Let Γ, ∆ be sets of ATL+ state formulae and Γ ⊆ ∆ ⊆ cl(Γ).

1. ∆ is patently inconsistent if it contains ⊥ or a pair of formulae ϕ and ¬ϕ.

2. ∆ is a full expansion of Γ if it is not patently inconsistent and satisfies the
following closure conditions:

• if ϕ ∧ ψ ∈ ∆ then ϕ ∈ ∆ and ψ ∈ ∆;

• if ϕ ∨ ψ ∈ ∆ then ϕ ∈ ∆ or ψ ∈ ∆;

• if ϕ ∈ ∆ is a γ-formula, then at least one γ-component of ϕ is in
∆ and exactly one of these γ-components in ∆, denoted γ(ϕ,∆), is
designated as the γ-component in ∆ linked to the γ-formula ϕ, as
explained below.

The family of all full expansions of Γ will be denoted by FE(Γ). It can be
constructed by a simple iterative procedure that starts with {Γ} and repeatedly,
until saturation, takes a set X from the currently constructed family, selects a
formula ϕ ∈ X and applies the closure rule above corresponding to its type.
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Clearly, this procedure terminates on every finite input set of formulae Γ and
produces a family of at most 2‖cl(Γ)‖ sets. Furthermore, due to Lemma 3.1, we
have the following:

Proposition 3.1. For any finite set of ATL+ state formulae Γ:

∧

Γ ≡
∨

{

∧

∆ | ∆ ∈ FE(Γ)
}

.

Proof. Lemma 3.1 implies that every set extension step, described above, ap-
plied to a family of sets F preserves the formula

∨

{
∧

∆ | ∆ ∈ F} up to logical
equivalence. At the beginning, that formula is

∧

Γ.

Remark 3.1. Instead of full expansions, the tableau construction in [9] uses
’minimal downward saturated extensions’, where ’downward saturated exten-
sion’ corresponds to ’full expansion’. The minimality condition means that if
one full expansion is contained in another one, then it is omitted. This could
be problematic, as sometimes non-minimal full expansions may be needed. For
instance, if Γ = {〈〈1〉〉(pUq), p ∧ 〈〈1〉〉©〈〈1〉〉(pUq)} then
FE(Γ) =

{

{〈〈1〉〉(pUq), p∧〈〈1〉〉©〈〈1〉〉(pUq), p, 〈〈1〉〉©〈〈1〉〉(pUq)}, {q, 〈〈1〉〉(pUq), p∧

〈〈1〉〉©〈〈1〉〉(pUq), p, 〈〈1〉〉©〈〈1〉〉(pUq)}
}

.
Although the second full expansion contains the first one, we might have to

consider both alternatives in the tableau where Γ is only part of the label of a
state, for the sake of satisfying an eventuality of the type ϕUψ. However, we
have no concrete example showing that such situation may occur indeed.

4 Tableau-based decision procedure for ATL
+

The tableau procedure consists of three major phases: pretableau construction,
prestate elimination and state elimination. Given an input formula η, it essen-
tially constructs a (non-deterministic) CGS which is state-labelled by the closure
set of the input formula cl(η), i.e., a directed graph T η (called a tableau) where
each node is labelled by a subset of cl(η) (see Def. 2.2(1)), and directed edges
between nodes relating them to successor nodes.

The pretableau construction phase produces the so-called pretableau Pη for
the input formula η, with two kinds of nodes: states and prestates. States
are fully expanded sets, meant to represent states of a CGM, while prestates
can be any finite sets of formulae from cl(η) and only play a temporary role
in the construction of Pη. States and prestates are labelled uniquely, so they
can be identified with their labels. The prestate elimination phase creates a
smaller graph T η

0 out of Pη, called the initial tableau for η, by eliminating all
the prestates from Pη and accordingly redirecting its edges. Finally, the state
elimination phase removes, step-by-step, all the states (if any) that cannot be
satisfied in a CGM, because they lack necessary successors or because they con-
tain unrealized eventualities. Eventually, the elimination procedure produces a
(possibly empty) subgraph T η of T η

0 , called the final tableau for η. If some state
∆ of T η contains η, the tableau procedure declares η satisfiable and a partly
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defined CGM (called Hintikka game structure) satisfying η can be extracted
from it by another procedure described in Section 6.2; otherwise it declares η
unsatisfiable.

4.1 Pretableau construction phase

The pretableau construction phase for an input formula η starts with an initial
prestate (with label) {η} and consists of alternating application of two construc-
tion rules, until saturation: (SR), expanding prestates into states, and (Next),
creating successor prestates from states. This phase closely resembles the corre-
sponding one for the ATL tableaux in [9], with the only essential difference being
the γ-decomposition of γ-formulae used here by the rule (SR), which causes,
as we will see, a possibly exponential blow-up of the size of the tableaux, and
eventually of the entire worst-case time complexity, as compared to the ATL

tableaux. Another (minor) difference with respect to [9] is in the formulation
of both rules, because here we work with formulae in negation normal form.

Rule (SR) Given a prestate Γ, do the following:

1. For each full expansion ∆ of Γ add to the pretableau a state with label ∆.

2. For each of the added states ∆, if ∆ does not contain any formulae of the
form 〈〈A〉〉©ϕ or [[A]]©ϕ, add the formula 〈〈A〉〉©⊤ to it;

3. For each state ∆ obtained at steps 1 and 2, link Γ to ∆ via a =⇒ edge;

4. If, however, the pretableau already contains a state ∆′ with label ∆, do
not create another copy of it but only link Γ to ∆′ via a =⇒ edge.

Example 4.1. For the formula θ from Example 3.1 the initial prestate is

Γθ0 = {〈〈1〉〉(pUq ∨�q) ∧ 〈〈2〉〉(♦p ∧�¬q)}.

It has two full expansions:
∆1 = {θ, θ1, θ2, p,¬q, 〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉(♦p ∧�¬q)}, and
∆2 = {θ, θ1, θ2, p, p ∧ ¬q,¬q, 〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉�¬q}.

Γθ0 : 〈〈1〉〉(pUq ∨�q) ∧ 〈〈2〉〉(♦p ∧�¬q)

∆1 : θ, θ1, θ2, p,¬q,
〈〈1〉〉©〈〈1〉〉pUq,

〈〈2〉〉©〈〈2〉〉(♦p ∧�¬q)

∆2 : θ, θ1, θ2, p, p ∧ ¬q,¬q,
〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉�¬q

Figure 4: Application of the rule (SR) on the prestate Γθ0 = {〈〈1〉〉(pUq ∨�q)∧
〈〈2〉〉(♦p ∧�¬q)}

Likewise, for the formula ϑ the initial prestate is

Γϑ0 = {〈〈1〉〉(pUq ∨�q) ∧ [[2]](♦p ∧�¬q)}
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and it has 2 full expansions:
∆1 = {ϑ, ϑ1, ϑ2, p,¬q, 〈〈1〉〉©〈〈1〉〉pUq, [[2]]©[[2]](♦p ∧�¬q)}, and
∆2 = {ϑ, ϑ1, ϑ2, p, p ∧ ¬q,¬q, 〈〈1〉〉©〈〈1〉〉pUq, [[2]]©[[2]]�¬q}.

In the following, by enforceable successor formula we mean a formula of the
form 〈〈A〉〉©ψ and by unavoidable successor formula – one of the form [[A′]]©ψ.

Rule (Next) Given a state ∆, do the following, where σ is a shorthand for σA:

1. List all primitive successor formulae of ∆ in such a way that all enforceable
successor formulae precede all unavoidable ones where A 6= A; let the
result be the list

L = 〈〈A0〉〉©ϕ0, . . . , 〈〈Am−1〉〉©ϕm−1, [[A
′
0]]©ψ0, . . . , [[A

′
l−1]]©ψl−1

Let r∆ = m+ l; denote by D(∆) the set {0, . . . , r∆−1}|A|. Then, for every
σ ∈ D(∆), denote N(σ) := {i | σi > m}, where σi is the ith component
of the tuple σ, and let co(σ) := [Σi∈N(σ)(σi −m)] mod l.

2. For each σ ∈ D(∆) create a prestate:

Γσ = {ϕp | 〈〈Ap〉〉©ϕp ∈ ∆ and σa = p for all a ∈ Ap}

∪ {ψq | [[A
′
q]]©ψq ∈ ∆, co(σ) = q, and A−A′

q ⊆ N(σ)}

If Γσ is empty, add ⊤ to it. Then connect ∆ to Γσ with
σ

−→.

If, however, Γσ = Γ for some prestate Γ that has already been added to
the pretableau, only connect ∆ to Γ with

σ
−→.

Remark 4.1. Rule (Next) ensures that every prestate Γ of ∆, that is every
element of the finite set of prestates that are targets of −→ edges outgoing from
∆, satisfies the following:

• if {〈〈Ai〉〉©ϕi, 〈〈Aj〉〉©ϕj} ⊆ ∆ and {ϕi, ϕj} ⊆ Γ, then Ai ∩ Aj = ∅;

• Γ contains at most one formula of the form ψ such that [[A]]©ψ ∈ ∆, since
the number co(σ) is uniquely determined for every σ ∈ D(∆);

• if {〈〈Ai〉〉©ϕi, [[A
′]]©ψ} ⊆ ∆ and {ϕi, ψ} ⊆ Γ, then Ai ⊆ A′.

Here is some intuition on the rule (Next) (see also [9]). This rule must
ensure that for each 〈〈A〉〉©ϕ from L there is a respective A-action at ∆ that
guarantees ϕ in the label of every successor and that for every [[A′]]©ψ from
L there is a A′-co-action at ∆ that ensures ψ in the label of the respective
successors.

Now, the actions at ∆ are defined so that every agent’s action represents
a choice of that agent of a formula from L for the satisfaction of which the
agent chooses to act. When all agents in some Ap choose action p, then they
act together for satisfying 〈〈Ap〉〉©ϕp, so this is the required Ap-action. As for
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the co-actions, the idea is that for any fixed [[A′
q]]©ψq in L, all agents in the

complement of A′
q may choose to act in favour of some [[.]]-formula by simply

selecting an action of the type σi ≥ m. Then, for every A′
q-action the agents in

A−A′
q can synchronise their actions to ensure that the resulting action profile σ

satisfies co(σ) = q, thereby ensuring ψq in the successor state. In fact, any agent
who chooses to act co-strategically, i.e., in favour of a [[.]]-formula, can always
synchronise her action with all other agents acting co-strategically to ensure that
the resulting action profile σ satisfies co(σ) = j, for any value j = 0, . . . l − 1.
So, every such agent i is able, once all other agents have chosen their actions, to
unilaterally enforce in the successor state any ψq such that [[A′

q ]]©ψq in L and
i /∈ A′

q.
The rules (SR) and (Next) are applied alternatively until saturation, which

is bound to occur because every label is a subset of cl(η). Then the construction
phase is over. The graph built in this phase is called pretableau for the input
formula η and denoted by Pη. Given a pretableau, if Γ is a prestate, we denote
by states(Γ) the finite set of states that are targets of =⇒ edges outgoing from
Γ and if ∆ is a state we denote by prestates(∆) the finite set of prestates that
are targets of −→ edges outgoing from ∆.

Before providing an example of how rule (Next) works, we give an example
for the computation of the function co.

Example 4.2. Let the input formula, containing two agents, 1 and 2, be such
that at some step of the pretableau construction, there is a state containing the
next four primitive formulae: {〈〈1〉〉©ϕ1, 〈〈1, 2〉〉©ϕ2, [[2]]©ϕ3, [[1]]©ϕ4}. The
computation of the functions N and co and the successor prestate Γσ for each
action profile gives:

σ N(σ) co(σ) Γσ σ N(σ) co(σ) Γσ

0, 0 ∅ 0 {ϕ1} 2, 0 {1} 0 {ϕ3}

0, 1 ∅ 0 {ϕ1} 2, 1 {1} 0 {⊤}

0, 2 {2} 0 {ϕ1} 2, 2 {1, 2} 0 {ϕ3}

0, 3 {2} 1 {ϕ1, ϕ4} 2, 3 {1, 2} 1 {ϕ4}

1, 0 ∅ 0 {⊤} 3, 0 {1} 1 {⊤}

1, 1 ∅ 0 {ϕ2} 3, 1 {1} 1 {⊤}

1, 2 {2} 0 {⊤} 3, 2 {1, 2} 1 {ϕ4}

1, 3 {2} 1 {ϕ4} 3, 3 {1, 2} 0 {ϕ3}

Example 4.3. (Continuation of Example 4.1 for θ) For ∆1, the list of successor
formulae is

L = 〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉(♦p ∧�¬q)
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So m = 2, l = 0 and r∆1
= 2.

As there are no unavoidable successor formulae, we do not need to compute
N(σ) and co(σ). Then,

Γ(0,0) = {〈〈1〉〉pUq} = Γ1 Γ(1,0) = {⊤} = Γ3

Γ(0,1) = {〈〈1〉〉pUq, 〈〈2〉〉(♦p ∧�¬q)} = Γ2 Γ(1,1) = {〈〈2〉〉(♦p ∧�¬q)} = Γ4.

For ∆2, the list of successor formulae is

L = 〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉�¬q

So m = 2, l = 0 and r∆2
= 2.

Here again, we do not compute N(σ) and co(σ). Then

Γ(0,0) = {〈〈1〉〉pUq} = Γ1 Γ(1,0) = {⊤} = Γ3

Γ(0,1) = {〈〈1〉〉pUq, 〈〈2〉〉�¬q} = Γ5 Γ(1,1) = {〈〈2〉〉�¬q} = Γ6.

Applying rule (SR) to the so-obtained prestates, we have:
states(Γ1) = {∆3 : {〈〈1〉〉pUq, p, 〈〈1〉〉©〈〈1〉〉pUq},∆4 : {〈〈1〉〉pUq, q, 〈〈1, 2〉〉©⊤}},
states(Γ2) = {∆5 : {〈〈1〉〉pUq, 〈〈2〉〉(♦p ∧ �¬q), p,¬q, 〈〈1〉〉© 〈〈1〉〉pUq, 〈〈2〉〉©
〈〈2〉〉(♦p∧�¬q)},∆6 : {〈〈1〉〉pUq, 〈〈2〉〉(♦p∧�¬q), p, p∧¬q,¬q, 〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©
〈〈2〉〉�¬q}};
states(Γ3) = {∆7 : {⊤, 〈〈1, 2〉〉©⊤}};
states(Γ4) = {∆8 : {〈〈2〉〉(♦p∧�¬q),¬q, 〈〈2〉〉©〈〈2〉〉(♦p∧�¬q)},∆9 : {〈〈2〉〉(♦p∧
�¬q), p ∧ ¬q,¬q, 〈〈2〉〉©〈〈2〉〉�¬q}};
states(Γ5) = {∆10 : {〈〈1〉〉pUq, 〈〈2〉〉�¬q, p,¬q, 〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉�¬q}};
states(Γ6) = {∆11 : {〈〈2〉〉�¬q,¬q, 〈〈2〉〉©〈〈2〉〉�¬q}}.

The pretableau for θ is given in Figure 5.

Example 4.4. (Continuation of Example 4.1 for ϑ) For ∆1, the list of successor
formulae is

L = 〈〈1〉〉©〈〈1〉〉pUq, [[2]]©[[2]](♦p ∧�¬q)

So m = 1, l = 1 and r∆1
= 2. Therefore,

N(0, 0) = ∅ N(1, 0) = {1}

N(0, 1) = {2} N(1, 1) = {1, 2}

and also co(0, 0) = co(0, 1) = co(1, 0) = co(1, 1) = 0. Then,

Γ(0,0) = Γ(0,1) = {〈〈1〉〉pUq} = Γ1, and Γ(1,0) = Γ(1,1) = {[[2]](♦p ∧�¬q)} = Γ2.

For ∆2, the list of successor formulae is

L = 〈〈1〉〉©〈〈1〉〉pUq, [[2]]©[[2]]�¬q
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Γ0 : 〈〈1〉〉(pUq ∨�q) ∧ 〈〈2〉〉(♦p ∧�¬q)

∆1 : θ, θ1, θ2, p,¬q,
〈〈1〉〉©〈〈1〉〉pUq,

〈〈2〉〉©〈〈2〉〉(♦p ∧�¬q)

∆2 : θ, θ1, θ2, p, p ∧ ¬q,¬q,
〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉�¬q

Γ1 : 〈〈1〉〉pUq
Γ4 :

〈〈2〉〉(♦p ∧�¬q)
Γ2 : 〈〈1〉〉pUq,
〈〈2〉〉(♦p ∧�¬q)

Γ3 : ⊤
Γ5 :

〈〈1〉〉pUq, 〈〈2〉〉�¬q
Γ6 : 〈〈2〉〉�¬q

∆7 ∆10 ∆11∆4∆3∆9∆8∆6∆5

0, 00, 1 1, 01, 1
0, 0 0, 11, 0 1, 1

0, 0 0, 0
0, 00, 0

0, 0

0, 0

∆5

Γ2Γ1 Γ3 Γ4

0, 0 0, 1 1, 0 1, 1

∆6/∆10

Γ5Γ1 Γ3 Γ6

0, 0 0, 1 1, 0 1, 1

Figure 5: The pretableau for θ
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Γ0 : 〈〈1〉〉(pUq ∨�q) ∧ 〈〈2〉〉(♦p ∧�¬q)

∆1 :
ϑ, ϑ1, ϑ2, p,¬q, 〈〈1〉〉©〈〈1〉〉pUq,

[[2]]©[[2]](♦p ∧�¬q)

∆2 : ϑ, ϑ1, ϑ2, p, p ∧ ¬q,¬q,
〈〈1〉〉©〈〈1〉〉pUq, [[2]]©[[2]]�¬q

Γ1 : 〈〈1〉〉pUqΓ2 : [[2]](♦p ∧�¬q) Γ3 : [[2]]�¬q

∆3 ∆4
∆7

∆5 ∆6 Γ4 : ⊤

∆8 : ⊤, 〈〈1, 2〉〉©⊤

0, 0
0, 1

1, 0
1, 1

0, 0
0, 1

1, 0
1, 1

0, 0

0, 0

0, 0

0, 0

0, 0

Figure 6: The pretableau for ϑ

So m = 1, l = 1 and r∆2
= 2. Here also

N(0, 0) = ∅ N(1, 0) = {1}

N(0, 1) = {2} N(1, 1) = {1, 2}

and co(0, 0) = co(0, 1) = co(1, 0) = co(1, 1) = 0. Then,

Γ(0,0) = Γ(0,1) = {〈〈1〉〉pUq} = Γ1, and Γ(1,0) = Γ(1,1) = {[[2]]�¬q} = Γ3.

In the same way, we obtain:
states(Γ1) = {∆3 : {〈〈1〉〉pUq, p, 〈〈1〉〉©〈〈1〉〉pUq},∆4 : {〈〈1〉〉pUq, q, 〈〈1, 2〉〉©⊤}};
states(Γ2) = {∆5 : {[[2]](♦p ∧ �¬q),¬q, [[2]]© [[2]](♦p ∧ �¬q)},∆6 : {[[2]](♦p ∧
�¬q), p ∧ ¬q, p,¬q, [[2]]©[[2]]�¬q}};
states(Γ3) = {∆7 : {[[2]]�¬q,¬q, [[2]]©[[2]]�¬q}};
states(Γ4) = {∆8 : {⊤, 〈〈1, 2〉〉©⊤}}.

The pretableau for ϑ is given in Figure 6.

4.2 The prestate and state elimination phases. Eventual-
ities

First, we remove from Pη all the prestates and the =⇒ edges, as follows. For
every prestate Γ in Pη put ∆

σ
−→ ∆′ for all states ∆ in Pη with ∆

σ
−→ Γ and all

∆′ ∈ states(Γ); then, remove Γ from Pη. The graph obtained after eliminating
all prestates is called the initial tableau, denoted by T η

0 . The initial tableau
for the formula θ in our running example is given on Figure 7 and the initial
tableau for ϑ is given on Figure 8.

The elimination phase starts with T η
0 and goes through stages. At stage

n+1 we remove exactly one state from the tableau T η
n obtained at the previous
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∆1 : θ, θ1, θ2, p,¬q,
〈〈1〉〉©〈〈1〉〉pUq,

〈〈2〉〉©〈〈2〉〉(♦p ∧�¬q)

∆2 : θ, θ1, θ2, p, p ∧ ¬q,¬q,
〈〈1〉〉©〈〈1〉〉pUq, 〈〈2〉〉©〈〈2〉〉�¬q

∆7 ∆10 ∆11∆4∆3∆9∆8∆6∆5

0, 0 0, 00, 1 0, 1 1, 01, 1 1, 1

0, 0

0, 0 0, 11, 0 1, 1

0, 0
0, 0

0, 0

0, 1
0, 1

1, 0

1, 1

0, 0

0, 0

0, 1

1, 0

1, 1

0, 0

0, 0 0, 0

0, 0

0, 0

0, 1

1, 0

1, 1

0, 0

Figure 7: The initial tableau for θ

∆1 :
ϑ, ϑ1, ϑ2, p,¬q, 〈〈1〉〉©〈〈1〉〉pUq,

[[2]]©[[2]](♦p ∧�¬q)

∆2 : ϑ, ϑ1, ϑ2, p, p ∧ ¬q,¬q,
〈〈1〉〉©〈〈1〉〉pUq, [[2]]©[[2]]�¬q

∆3 ∆4
∆7

∆5 ∆6 ∆8 : ⊤, 〈〈1, 2〉〉©⊤

0, 0
0, 1

0, 0
0, 11, 0

1, 1
1, 0
1, 1

0, 0
0, 1 0, 0

0, 1

1, 0
1, 1

0, 0

0, 0

0, 0
0, 0

0, 0

0, 0

0, 0

0, 0

Figure 8: The initial and final tableau for ϑ
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stage, by applying one of the elimination rules described below, thus obtaining
the tableau T η

n+1. The set of states of T η
m is noted Sηm.

The first elimination rule (ER1), defined below, is used to eliminate all
states with missing successors for some action vectors determined by the rule
(Next). If, due to a previous state elimination, any state has an outgoing
action vector for which the corresponding successor state is missing, we delete
the state. The reason is clear: if ∆ is to be satisfiable, then for each σ ∈ D(∆)
there should exist a satisfiable ∆′ that ∆ reaches via σ. Formally, the rule is
stated as follows, where D(∆) is defined in the rule (Next):

Rule (ER1): If, for some σ ∈ D(∆), all states ∆′ with ∆
σ

−→ ∆′ have been
eliminated at earlier stages, then obtain T η

n+1 by eliminating ∆ (together with
its adjacent edges) from T η

n .

The aim of the next elimination rule is to make sure that there are no unre-
alized eventualities. In ATL there are only two kinds of eventualities : 〈〈A〉〉ϕUψ
and [[A]]ϕUψ . The situation is more complex in ATL+. For instance, should
the formula 〈〈A〉〉(�ϕ ∨ ψ1 Uψ2) be considered an eventuality? Our solution for
ATL+ is to consider all γ-formulae as potential eventualities. In order to prop-
erly define the notion of realization of a potential eventuality we first define a
Boolean-valued function Real that takes as arguments two elements: an ATL+

path-formula Φ and a set Θ of ATL+ state-formulae. This function allows us
to check the realization of a potential eventuality of the form 〈〈A〉〉Φ and [[A]]Φ
(where Φ is the first argument of Real) at a given state labelled by Θ (where Θ
is the second argument of Real).

• Real(Φ ∧Ψ,Θ) = Real(Φ,Θ) ∧Real(Ψ,Θ)

• Real(Φ ∨Ψ,Θ) = Real(Φ,Θ) ∨Real(Ψ,Θ)

• Real(ϕ,Θ) = true iff ϕ ∈ Θ

• Real(©ϕ,Θ) = false

• Real(�ϕ,Θ) = true iff ϕ ∈ Θ

• Real(ϕUψ,Θ) = true iff ψ ∈ Θ

Definition 4.1 (Descendant potential eventualities). Let ξ ∈ ∆ be a potential
eventuality of the form 〈〈A〉〉Φ or [[A]]Φ. Suppose the γ-component γ(ξ,∆) in ∆
linked to ξ is, respectively, of the form ψ∧〈〈A〉〉©〈〈A〉〉Ψ or ψ∧ [[A]]©[[A]]Ψ. Then
the successor potential eventuality of ξ w.r.t. γ(ξ,∆) is the γ-formula 〈〈A〉〉Ψ
(resp. [[A]]Ψ) and it will be denoted by ξ1∆. The notion of descendant potential
eventuality of ξ of degree d, for d > 1, is defined inductively as follows:

- any successor eventuality of ξ (w.r.t. some γ-component of ξ) is a descen-
dant eventuality of ξ of degree 1;

- any successor eventuality of a descendant eventuality ξn of ξ of degree n is
a descendant eventuality of ξ of degree n+ 1.

We will also consider ξ to be a descendant eventuality of itself of degree 0.
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Example 4.5. Let ξ = 〈〈A〉〉(�p ∨ q Ur) be a potential eventuality such that
ξ ∈ Θ, where Θ is the labelling of a state ∆. Let us see the different cases that
can occur and the corresponding result of the function Real.

1. p ∈ Θ and r ∈ Θ. In that case, Real(�p,Θ) = true and Real(q Ur,Θ) =
true, so Real(�p ∨ q Ur,Θ) = true. This is indeed correct since q Ur is
immediately realized.

2. p 6∈ Θ and r ∈ Θ. This case is similar to the previous one even if
Real(�p,Θ) = false, indeed Real(�p ∨ q Ur,Θ) = true.

3. p 6∈ Θ and r 6∈ Θ. Here Real(�p ∨ q Ur,Θ) = false and the potential
eventuality ξ is not immediately realized. The rule (SR) guarantees that
q ∈ Θ. This case means that the part �p of ξ is skipped and the part q Ur
will be continued. Therefore the next potential eventuality to be realized
is 〈〈A〉〉q Ur. The immediate realization of this new potential eventuality
will be checked again at next states.

4. p ∈ Θ and r 6∈ Θ. The potential eventuality ξ is immediately realized since
Real(�p,Θ) = true, but two sub-cases can be distinguished to explain
why this is correct:

(a) q ∈ Θ. Here both possibilities to do either �p or q Ur are kept. So the
successor potential eventuality is 〈〈A〉〉(�p ∨ q Ur) and its immediate
realization will be checked again at next states.

(b) q 6∈ Θ. This means that only the part �p will be kept and the
successor potential eventuality is 〈〈A〉〉�p. This case can be declared
immediately realized since the construction rules of the tableau guar-
antees that 〈〈A〉〉�p is correctly treated.

Example 4.6. (Continuation of Example 4.3) In ∆5 we have ξ = 〈〈1〉〉(pUq ∨
�q) with Real(pUq ∨ �q,∆1) = Real(pUq,∆1) ∨ Real(�q,∆1) = false ∨
false = false, since q 6∈ ∆1, and ξ

′ = 〈〈2〉〉(♦p∧�¬q) with Real(♦p∧�¬q,∆1) =
Real(♦p,∆1) ∧Real(�¬q,∆1) = true ∧ true = true since p,¬q ∈ ∆1.

The successor eventuality of ξ = 〈〈1〉〉(pUq ∨ �q) w.r.t γ(ξ,∆1) is ξ1∆1
=

〈〈1〉〉pUq in ∆3,∆4,∆5,∆6. For each n > 1, the descendant eventuality of
degree n of ξ w.r.t γ(ξ,∆1) is ξ

n
∆1

= ξ1∆1
in ∆3,∆4∆5,∆6,∆10. The successor

eventuality of ξ′ = 〈〈2〉〉(♦p ∧ �¬q) w.r.t γ(ξ′,∆5) is ξ′1∆5
= 〈〈2〉〉(♦p ∧ �¬q) in

∆5, ∆6, ∆8. For each n > 1, the descendant eventualities of degree n of ξ′ w.r.t
γ(ξ′,∆5) are ξ

′n
∆5

= ξ′1∆5
in ∆5, ∆6, ∆8 and ∆9; and ξ

′n
∆5

= 〈〈2〉〉�¬q in ∆10 and
∆11.

Now, let L = 〈〈A0〉〉©ϕ0, . . . , 〈〈Am−1〉〉©ϕm−1, [[A
′
0]]©ψ0, . . . , [[A

′
l−1]]©ψl−1

be the list of all primitive successor formulae of ∆ ∈ Sη0 , induced as part of an
application of (Next). We will use the following notation:
D(∆, 〈〈Ap〉〉©ϕp) := {σ ∈ D(∆) | σa = p for every a ∈ Ap}
D(∆, [[A′

q]]©ψq) := {σ ∈ D(∆) | co(σ) = q and A−A′
q ⊆ N(σ)}

Next, we will define recursively what it means for an eventuality ξ to be
realized at a state ∆ of a tableau T η

n , followed by our second elimination rule.
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∆7 ∆11∆4∆3∆9∆8 0, 0
0, 0 0, 0

0, 0

0, 0 0, 0

0, 0

0, 0

Figure 9: The final tableau for θ

Definition 4.2 (Realization of potential eventualities). Let ∆ ∈ Sηn and ξ ∈ ∆
be a potential eventuality of the form 〈〈A〉〉Φ or [[A]]Φ. Then:

1. If Real(Φ,∆) = true then ξ is realized at ∆ in T η
n .

2. Else, let ξ1∆ be the successor potential eventuality of ξ w.r.t. γ(ξ,∆). If
for every σ ∈ D(∆, 〈〈A〉〉©ξ1∆) (resp. σ ∈ D(∆, [[A]]©ξ1∆)), there exists

∆′ ∈ T η
n with ∆

σ
−→ ∆′ and ξ1∆ is realized at ∆′ in T η

n , then ξ is realized
at ∆ in T η

n .

Rule (ER2): If ∆ ∈ Sηn contains a potential eventuality that is not realized
at ∆ ∈ T η

n , then obtain T η
n+1 by removing ∆ (together with its adjacent edges)

from Sηn.

Example 4.7. (Continuation of Example 4.6) The potential eventuality ξ′′ =
〈〈1〉〉(pUq) is not realized at ∆5, so by Rule (ER2) we remove the state ∆5

from T θ
0 and obtain the tableau T θ

1 . The same applies to ∆6 for ξ′′, so we also
remove ∆6 from T θ

1 and obtain T θ
2 with Rule (ER2). In T θ

2 there is no more
move vector (0, 1) for the state ∆1, so by Rule (ER1) we remove ∆1 from T θ

2

and obtain T θ
3 . In the same way, ∆10 is removed by Rule (ER2) and ∆2 by

Rule (ER1).
For the case of ϑ, it is easy to see that no state gets eliminated, so the final

tableau is the same as the initial one.

The elimination phase is completed when no more applications of elimination
rules are possible. Then we obtain the final tableau for η, denoted by T η. It is
declared open if η belongs to some state in it, otherwise closed. The procedure
for deciding satisfiability of η returns “No” if T η is closed, “Yes” otherwise.

Example 4.8. (Continuation of Example 4.7) At the end of the elimination
phase, ∆1 and ∆2 are no longer in T θ. Thus T θ is closed and the formula
θ = 〈〈1〉〉(pUq∨�q)∧〈〈2〉〉(♦p∧�¬q) is declared unsatisfiable. The final tableau
for θ is given on Figure 9.

Respectively, the final tableau for ϑ is open, hence ϑ is declared satisfiable.
Indeed, a CGM can be extracted from the final tableau. We will explain in
Section 6.2 how this can be done in a systematic way.

5 Termination and soundness

The termination of the tableau procedure is straightforward, as there are only
finitely many states and prestates that can be added in the construction phase.
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Theorem 5.1. The tableau method for ATL+ is sound.

Soundness of the tableau procedure with respect to unsatisfiability means
that if a formula is satisfiable then its final tableau is open. To prove that, we
essentially follow the same procedure as in the soundness proof for the tableau-
based decision procedure for ATL in [9].

The soundness proof consists of three main claims. First, we show that
when a prestate Γ is satisfiable then at least one of the states in states(Γ)
is satisfiable. Then, we prove that when a state ∆ is satisfiable then all the
prestates in prestates(∆) are satisfiable. Finally, we show that no satisfiable
states are eliminated in the elimination phase. Below, we take the input formula
of the tableau procedure to be η.

The first step of the proof consists in showing that rule (SR) is sound:

Lemma 5.1. Let Γ be a prestate of Pη and let M, s |= Γ for some CGM M
and some s ∈ M. Then, M, s |= ∆ holds for at least one ∆ ∈ states(Γ).

Proof. Straightforward from Proposition 3.1.

The aim of the next two lemmas is to show that the rule (Next) creates
only satisfiable prestates from satisfiable states.

We recall that we use actA(s) to denote the set of all A-actions that can be
played by the coalition A at state s, i.e. actA(s) = Πa∈Aacta(s). We also use
actcA(s) to denote the set of all A-co-actions available at state s and σcA for an
element of this set. Let σA ∈ actA(s). We say that an action profile σA extends
an A-action σA, denoted by σA ⊒ σA, if σA(a) = σA(a) for every a ∈ A. We also
use Out(s, σA) to denote the set of all states s′ for which there exists an action
profile σA ∈ actA(s) that extends σA and such that out(s, σA) = s′. We define in
a same way ⊒ and Out(s, σcA) for an A-co-action σ

c
A ∈ actcA(s).

The following lemma states a semantic property, independent of the tableau
construction.

Lemma 5.2. Let Θ = {〈〈A1〉〉©ϕ1, . . . , 〈〈Am〉〉©ϕm, [[A′]]©ψ} be a set of formulae
such that Ai ∩ Aj = ∅ for every 1 6 i, j 6 m, i 6= j and Ai ⊆ A′ for every
1 6 i 6 m. Let M, s |= Θ for some GCM M and s ∈ M. Let σAi

∈ actAi
(s)

be an Ai-action witnessing the truth of 〈〈Ai〉〉©ϕi at s, for each 1 6 i 6 m, and
let, finally, σcA′ ∈ actcA′(s) be an A′-co-action witnessing the truth of [[A′]]©ψ at
s. Then there exists s′ ∈ Out(s, σA1

)∩ · · · ∩Out(s, σAm
)∩Out(s, σcA′) such that

M, s′ |= {ϕ1, . . . , ϕm, ψ}.

Proof. Let A = A1 ∪ . . . ∪ Am. Since Ai ∩ Aj = ∅ for every 1 6 i, j 6 m, the
actions σA1

, . . . , σAm
can be combined to get an A-action σA. This last can be

arbitrarily extended to an A′-action σA′ because Ai ⊆ A′ for every 1 6 i 6 m.
Finally, the so obtained σA′ can be completed by the A′-co-action σcA′ . The
resulting action σA leads from s to the desired s′.

The next lemma states that satisfiability propagates from states to their
successor prestates created via rule (Next).
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Lemma 5.3. If ∆ ∈ Pη is a satisfiable state then all the prestates Γ obtained
by applying the rule (Next) are satisfiable.

Proof. Follows by induction on the number of steps in the construction of the
tableau, and from Lemma 5.2 and Remark 4.1.

Thus, the rule (SR) generates at least one satisfiable state from a satisfiable
prestate and that the rule (Next) generates only satisfiable prestates from a
satisfiable state. Hence, we can conclude that the construction phase of the
tableau procedure is sound.

We now move to the elimination phase.

Lemma 5.4. Let ∆ be a state in T η
n . If ∆ is satisfiable then Rule (ER1)

cannot eliminate ∆ from T η
n .

Proof. By Lemma 5.2 a satisfiable state ∆ generates only satisfiable successor
prestates, and, by Lemma 5.3, each of these prestates in turn generates at least
one satisfiable state. Therefore, if ∆ is satisfiable then for every action profile
σA ∈ actA(s) there is a state ∆′ such that ∆

σA−→ ∆′. Therefore the Rule (ER1)
cannot eliminate a satisfiable state.

It remains to be proved that a satisfiable state cannot be eliminated by Rule
(ER2), either. We recall that Rule (ER2) eliminates each state containing an
eventuality that is not realized at that state. So we need to prove that if a state
∆ is satisfiable, then every eventuality ξ ∈ ∆ is realized at ∆ throughout the
elimination phase.

Note that the structure underlying a tableau can be seen as a non-deterministic
CGS, where edges outgoing from a tableau state can lead to different successors
even if they are labelled by the same action vector. The following two definitions
will be used to extract deterministic transitions from non-deterministic ones.

Definition 5.1 (Outcome set of σA at s). Let S be a non-deterministic con-
current game structure, let s be a state and let σA ∈ actA(σ). An outcome set
of σA at s is a set of states X such that for every σA ⊒ σA there exists exactly
one s′ ∈ X such that s

σA−→ s′.

Definition 5.2 (Outcome set of σcA at s). Let S be a non-deterministic con-
current game structure, let s be a state and let σcA ∈ actcA(s). An outcome set
of σcA at s is a set of states X such that for every σA ∈ actA(s) there exists

exactly one s′ ∈ X such that s
σc
A(σA)
−→ s′.

In particular, both definitions above can be applied to a tableau, where the
states s and s′ are taken to be tableau states ∆ and ∆′.

Some notation. Consider a concurrent game structure S which is state-
labelled by a set Θ of state formulae of ATL+ and suppose that the elements of
Θ are listed by any enumeration E where enforceable next-time formulae appear
before unavoidable next-time formulae, in particular, in the list L given in the
definition of Rule (Next). Then:
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1. Whenever we write 〈〈Ap〉〉©ϕp ∈ Θ, we mean that 〈〈Ap〉〉©ϕp is the p-th
enforceable next-time formula according to E. In particular, when S is a
tableau, E is usually assumed to be the listing of the successor formulae
of Θ induced by the application of the rule (Next) to Θ.

We use the notation [[A′
q]]©ψq ∈ Θ likewise.

2. Given 〈〈Ap〉〉©ϕ ∈ Θ, we denote by σAp
[〈〈Ap〉〉©ϕ] a (somehow selected)

A-action enforcing ϕ in any associated successor state.

In particular, when S is a tableau, we denote by σAp
[〈〈Ap〉〉©ϕp] the unique

Ap-action σAp
∈ actAp

(Θ) in the tableau such that σAp
(a) = p for every

a ∈ Ap.

3. Likewise, given a formula [[A′]]©ψ ∈ Θ, where A′
q 6= A, we denote by

σcA′

q
[[[A′

q]]©ψ] a (somehow selected) A′
q-co-action σ

c
A′

q
enforcing ψ in any

associated successor state.

In particular, when S is a tableau, we denote by σcA′

q
[[[A′

q]]©ψq] the

unique A′
q-co-action σ

c
A′

q
∈ actcA′

q
(∆) in the tableau satisfying the follow-

ing condition (with notation referring to the definition of rule (Next)):
co(σcA′

q
(σA′

q
)) = q and A−A′

q ⊆ N(σcA′

q
(σA′

q
)) for every σA′

q
∈ actA′

q
(∆).

In order to prove that the rule (ER2) does not eliminate any satisfiable
states, we need to show that if a tableau T η

n contains a state ∆ that is satisfiable
and contains an eventuality ξ , then ξ is realized at ∆. Thus we prove that T η

n

“contains” a structure (more precisely, a tree) that “witnesses” the realization
of ξ at ∆ in T η

n . This tree will emulate a tree of runs effected by a strategy or
a co-strategy that “realizes” an eventuality in a model. This simulation is done
step-by-step, and each step, i.e. A-action (in the case of 〈〈A〉〉Φ) or A-co-action
(in the case of [[A]]Φ) corresponds to a tableau action or co-action associated
with a respective eventuality. The fact that this step-by-step simulation can be
done is proved in the next two lemmas (together with their corollaries).

Lemma 5.5. Let 〈〈Ap〉〉©ϕp ∈ ∆ ∈ Sηn and let M, s |= ∆ for some CGM M
and state s ∈ M. Let, furthermore, σAp

∈ actAp
(s) be an Ap-action witnessing

the truth of 〈〈Ap〉〉©ϕp at s. Then, there exists in T η
n an outcome set X of

σAp
[〈〈Ap〉〉©ϕp] such that for each ∆′ ∈ X there exists s′ ∈ Out(s, σAp

) such
that M, s′ |= ∆′.

Proof. We consider the following set of prestates (from the pretableau construc-
tion):

Y = {Γ ∈ prestates(∆) | ∆
σA−→ Γ for some σA ⊒ σAp

[〈〈Ap〉〉©ϕp]}

For every Γ ∈ Y , it follows immediately from the rule (Next) that Γ (which
must contain ϕp) is either of the form

{ϕ1, . . . , ϕm, ψ}, where {〈〈A1〉〉©ϕ1, . . . , 〈〈Am〉〉©ϕm, [[A
′]]©ψ} ⊆ ∆,

or of the form
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{ϕ1, . . . , ϕm} where {〈〈A1〉〉©ϕ1, . . . , 〈〈Am〉〉©ϕm} ⊆ ∆.
We can reduce the latter case to the former by adding the valid formula

[[A]]©⊤ (equivalent to 〈〈∅〉〉©⊤).
Since M, s |= ∆, by Lemma 5.2, there exists s′ ∈ Out(s, σAp

) with M, s′ |=
Γ. Then Γ can be extended to a fully expanded set ∆′ containing at least one
successor formula (〈〈A〉〉©⊤, if nothing else) such that M, s′ |= ∆′. This is
done by choosing, for every β- or γ-formula to be processed in the procedure
computing the family of full expansions, a disjunct, resp. a γ-component, that is
actually true inM at s′ (if there are several such options, the choice is arbitrary)
and adding it to the current set.

Corollary 1. Let 〈〈Ap〉〉©ϕp ∈ ∆ for ∆ ∈ Sηn and let M, s |= ∆ for some
CGM M and state s ∈ M. Let, furthermore, σAp

∈ actAp
(s) be an Ap-action

witnessing the truth of 〈〈Ap〉〉©ϕp at s and let χ ∈ cl(η) be a β-formula (resp. a
γ-formula) and ψ be one of its β-components (resp. γ-components). Then there
exists in T η

n an outcome set Xψ of σAp
[〈〈Ap〉〉©ϕp] such that for every ∆′ ∈ Xψ

there exists s′ ∈ Out(s, σAp
) such that M, s′ |= ∆′, and moreover, if M, s′ |= ψ,

then ψ ∈ ∆′.

Proof. Construct Xψ just like X was constructed in the proof of the preceding
lemma, with a single modification: when dealing with the formula χ, instead of
choosing arbitrarily between the different options for ψ, choose ψ which is true
at s′.

Likewise, we obtain the following for unavoidable formulae:

Lemma 5.6. Let [[A′
q]]©ψq ∈ ∆ ∈ Sηn and let M, s |= ∆ for some CGM M and

state s ∈ M. Let, furthermore, σcA′

q
∈ actcA′

q
(s) be an A′

q-co-action witnessing

the truth of [[A′
q]]©ψq at s. Then, there exists in T η

n an outcome set X of
σcA′

q
[ [[A′

q]]©ψq] such that for each ∆′ ∈ X there exists s′ ∈ Out(s, σcA′

q
) such

that M, s′ |= ∆′.

The proof is analogous to the proof of Lemma 5.5.

Corollary 2. Let [[A′
q]]©ψq ∈ ∆ ∈ Sηn and let M, s |= ∆ for some CGM M and

state s ∈ M. Let, furthermore, σcA′

q
∈ actcA′

q
(s) be an A′

q-co-action witnessing

the truth of [[A′
q]]©ψq at s and let χ ∈ cl(η) be a β-formula (resp. a γ-formula),

whose associated βi-component (i ∈ {1, 2}) (resp. i-th γ-component (i > 1)) is
χi. Then there exists in T η

n an outcome set Xχi
of σcA′

q
[ [[A′

q ]]©ψq] such that

for every ∆′ ∈ Xχi
there exists s′ ∈ Out(s, σcA′

q
) such that M, s′ |= ∆′, and

moreover, if M, s′ |= χi, then χi ∈ ∆′.

In what follows we make use of the notion of tree. In our context, we use
such a term as a synonym of “directed, connected, and acyclic graph, every
node of which, except the root, has exactly one incoming edge”. We denote a
tree as a pair (R,→), where R is the set of nodes and → is the parent-child
relation (the edges).
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The first kind of tree that we define is the so-called realization witness tree.
Intuitively, such tree witnesses the satisfaction of a given potential eventuality
ξ at a state and simulates a tree of runs effected in a model by (co-)strategies.
Our definition is more general than the one in [9], as we want this notion to
be applicable in a broader context, including tableaux, concurrent game models
and concurrent game Hintikka structures (to be defined later).

The two definitions below implicitly use the notion of descendant potential
eventuality of degree d and its associate notation (see Definition 4.1). That
notion was defined in the context of tableaux, however it is applicable to any
CGS which is state-labelled by a set of state formulae. We recall that, given
a potential eventuality ξ = 〈〈A〉〉Φ ([[A]]Φ), by convention ξ itself is taken to
be its (unique) descendant potential eventuality of degree 0 and that if ξi is
a descendant eventuality of degree i of ξ then a γ-component of ξi will have
the form ψ ∧ 〈〈A〉〉©〈〈A〉〉Φi+1 (respectively, ψ ∧ [[A]]©[[A]]Φi+1) and 〈〈A〉〉Φi+1

(respectively, [[A]]Φi+1) will be a descendant potential eventuality of ξ having
degree d = i+ 1.

A piece of terminology that will be used often further: given sets X,Y and
a mapping c : X → Y , we sometimes say that the set X is Y -coloured by c and
that for any x ∈ X , the value c(x) is the Y -colour of x under the colouring c.

Definition 5.3 (Realization witness tree for enforceable potential eventuali-
ties). Let S be any (non-deterministic) CGS with a state space St which is
state-labelled by some set of ATL+ formulae Γ, with a labelling function c. Let
s ∈ St and let ξ ∈ s be a potential eventuality of the form 〈〈A〉〉Φ. A realization
witness tree for ξ at s is a finite tree R = (R,→), where the set of nodes R is
St-coloured so that:

1. the root of R is coloured with s and is of depth 0;

2. if an interior node w of depth i of R is coloured with s′ where c(s′) = Θ,
then there exists a successor ξi+1 of ξi such that 〈〈A〉〉©ξi+1 ∈ Θ;

3. for every interior node w ∈ R of depth i coloured with s′ where c(s′) = Θ,
the children of w are coloured bijectively with vertices from an outcome
set of σA[〈〈A〉〉©ξi] at s′;

4. if a leaf of depth i of R is coloured with s′ where c(s′) = Θ, then ξi =
〈〈A〉〉Φ ∈ Θ is such that Real(Φ,Θ) = true.

Definition 5.4 (Realization witness tree for unavoidable potential eventual-
ities). Let S be any (non-deterministic) CGS with a state space St which is
state-labelled by some set of ATL+ formulae Γ, with a labelling function c. Let
s ∈ St and let ξ ∈ s be a potential eventuality of the form [[A]]Φ. A realization
witness tree for ξ at s is a finite tree R = (R,→), where the set of nodes R is
St-coloured so that:

1. the root of R is coloured with s and is of depth 0;
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2. if an interior node w of depth i of R is coloured with s′ where c(s′) = Θ,
then there exists a successor ξi+1 of ξi such that [[A]]©ξi+1 ∈ Θ;

3. for every interior node w ∈ R of depth i coloured with s′ where c(s′) = Θ,
the children of w are coloured bijectively with vertices from an outcome
set of σcA[[[A]]©ξi+1] at s′;

4. if a leaf of depth i of R is coloured with s′ where c(s′) = Θ, then ξi =
[[A]]Φ ∈ Θ is such that Real(Φ,∆′) = true.

We are going to apply the definitions above for the case when the CGS S
is a tableau T η

n , with states being (identified with) the sets of formulae in their
labels.

Lemma 5.7. Let R = (R,→) be a realization witness tree for a potential even-
tuality ξ at ∆ ∈ Sηn. For every ∆′ of depth i, colouring a node of R, ξi is realized
at ∆′ in T η

n . In particular for i = 0, thus ξ is realized at ∆ in T η
n .

Proof. We prove this lemma by induction on the length of the longest path from
a node coloured by ∆ to a leaf of R.

Base case: The length of the longest path from a node w coloured by ∆ to
a leaf of R is 0. Then w is a leaf and Real(ξ,∆) = true. Thus, by item 1 of
Definition 4.2, ξ is realized at ∆ ∈ Sηn.

Induction step: The length of the longest path from a node w coloured by
∆ to a leaf of R is l > 0. Then w is an interior node of depth i, so 〈〈A〉〉ξi ∈ ∆
(resp. [[A]]ξi ∈ ∆)) and there exists a action (resp. a co-action) such that for
all children w′ of w, where each w′ is coloured by ∆′, ξi+1

∆ ∈ ∆′. Let R′ be a
sub tree of R whose root is w′. The length of the longest path from a node w′

coloured by ∆′ to a leaf of R′ is at most l − 1. Thus, by induction hypothesis,
ξi+1
∆ is realized at ∆′ ∈ T η

n and ξj is realized at ∆′′ in T η
n . Therefore ξi+1

∆ is
realized at ∆′ in T η

n and w respects item 2 of Definition 4.2. We conclude that
ξi is realized at ∆ ∈ Sηn.

We now prove the existence of a realization witness tree for any satisfiable
state of a tableau containing a potential eventuality.

Lemma 5.8. Let ξ ∈ ∆ be a potential eventuality and ∆ ∈ Sηn be satisfiable.
Then there exists a realization witness tree R = (R,→) for ξ at ∆ ∈ Sηn. More-
over, every ∆′, colouring a node of R, is satisfiable.

Proof. We will only give the proof for potential eventualities of the type 〈〈A〉〉Φ.
The case of potential eventualities of type [[A]]Φ is similar.

When dealing with realization of potential eventualities, we have two cases:

1. Real(Φ,∆) = true. This case is straightforward, the realization witness
tree consists of only the root, coloured with ∆.
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2. Real(Φ,∆) = false. This case means that there is a successor potential
eventuality ξ1∆ such that 〈〈A〉〉©ξ1∆ ∈ ∆.

As ∆ is satisfiable, there exists a CGM M and a state s ∈ M such that
M, s |= ∆, and in particular, M, s |= 〈〈A〉〉©ξ1∆. Thus, there exists an
A-action σA ∈ actcA(s) such that M, s′ |= ξ1∆ for all s′ ∈ Out(s, σA), that
is an A-action witnessing the truth of 〈〈A〉〉©ξ1∆ at s.

We know that ∆ is satisfiable and that 〈〈A〉〉©ξ1∆ is an enforceable suc-
cessor formula. Let p be the position of 〈〈A〉〉©ξ1∆ in the list made at the
application of the rule (Next) on ∆. Note that ξ is a γ-formula ∈ cl(η),
where at least one of its γ-components, obtained from a pair 〈ψ,Ψ〉, is such
that Real(Ψ, FE(ψ)) = true. Let χ be such a γ-component. So Lemma
5.5 is applicable to ∆, and according to that corollary, there exists an
outcome set Xχ of σA[〈〈A〉〉©ξ1∆] at ∆ such that, for every ∆′ ∈ Xχ, there
exists s′ ∈ Out(s, σ) such that M, s′ |= ∆′, and moreover, if M, s′ |= χ,
then χ ∈ ∆′. We start building the realization witness tree R with a
simple tree whose root r is coloured with ∆ and whose leaves are coloured
bijectively with a node from X . This first tree respects Items 1 to 3 of
Definition 5.3; some of the leaves respect Item 4 of this definition, but not
all of them. The next part treats these leaves.

Since, M, s |= ξ1∆ with ξ1∆ = 〈〈A〉〉Φ′ for every s′ ∈ Out(s, σA), it follows

that for every such s′ there exists a perfect-recall A-strategy F s
′

A such

that for every λ ∈ Plays(s′, F s
′

A ), M, λ |= Φ′. Then, playing σA followed

by playing F s
′

A constitutes a perfect recall strategy FA witnessing the truth
of ξ at s.

Then we continue the construction of R as follows. Let S′ be the set
of all sates s′′ appearing as part of a play consistent with F s

′

A , contain-
ing a descendant eventuality ξi of ξ and satisfying the requirement that
M, s′′ 6|= χ, for all γ-components χ obtained from a pair 〈ψ,Ψ〉 such
that Real(Ψ, FE(ψ)) = true. For every s′ ∈ Out(s, σA), we follow the
perfect recall strategy F s

′

A , matching every state s′′ ∈ S′ with a node

w′′ of R and matching every A′-action of F s
′

A at s′′ with the tableau
σA[〈〈A〉〉©ξi] ∈ actA(∆

′′) where ξi is the descendant eventuality of ξ in w′′

and ∆′′ is the state colouring the node w′′. We follow this way each F s
′

A

along each run until we reach a state t where M, t |= χ (χ is as described
above). This means that we have reached a leaf of R; this leaf respects
item 4 of Definition 5.3. As M, s |= ξ, such a state can be reached for
each run, and we thus obtain a finite tree R.

Thus, the so constructed realization witness tree conforms to Definition
5.3.

Lemma 5.9. Let ∆ be a state in T η
n . If ∆ is satisfiable then Rule (ER2)

cannot eliminate ∆ from T η
n .
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Proof. Let ∆ ∈ T η
n be a satisfiable state.

If ∆ contains no eventuality, then Rule (ER2) is not applicable.
If ∆ contains an eventuality ξ, then Lemma 5.8 ensures that there exists a
realization witness tree for ∆ and, by Lemma 5.7 we know that ξ is realized at
∆ in T η

n . Therefore, Rule (ER2) cannot eliminate ∆ for T η
n .

Theorem 5.2 (Soundness). If η is satisfiable, then T η is open.

Proof. Lemmas 5.3–5.9 ensure that if ∆ is satisfiable, then ∆ cannot be elim-
inated from T η

n due to Rule (ER1) or Rule (ER2). Moreover, Lemma 5.1
ensures that if the input formula η is satisfiable, then at least one state contain-
ing η (created from the initial prestate) is satisfiable. Thus, this state cannot
be eliminated and therefore the final tableau T η is open.

6 Completeness, model synthesis and complex-

ity

6.1 Hintikka Structures

The tableau procedure actually attempts to build not a concurrent game model
of the input formula but a state-labelled non-deterministic CGS, from which
structures of a special kind can be extracted which essentially are partly de-
fined concurrent game models. Following [11, 2, 9] we will call them Hintikka
structures. Here we will give the definition of a Hintikka structure for a given
ATL+ formula η and will show how to obtain a CGM for η from a Hintikka struc-
ture for η. Later we will explain how to extract a Hintikka structure ‘satisfying’
the input formula from its open final tableau.

Definition 6.1. A Concurrent Game Hintikka Structure (for short, CGHS) is
a deterministic CGS H = (A, St, {Acta}a∈A, {acta}a∈A, out, H) which is state-
labelled by a given set Γ of ATL+-formulae with a state-labelling function H .
Let s ∈ St be a state of H. An Hintikka structure H satisfies the following
constraints:

H1 If ϕ ∈ H(s) then ¬ϕ 6∈ H(s);

H2 If an α-formula belongs to H(s), then its both α-components do;

H3 If a β-formula belongs to H(s), then one of its β-components does;

H4 If a γ-formula belongs to H(s), then one of its γ-components does;

H5 If 〈〈A〉〉©ψ ∈ H(s), then there exists an A-action σA ∈ actA(s) such that
ψ ∈ H(s′) for all s′ ∈ Out(s, σA). Likewise, if [[A]]©ψ ∈ H(s), then there
exists an A-co-action σcA ∈ actcA(s) such that, for all ψ ∈ H(s′) for all
s′ ∈ Out(s, σcA).
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H6 If a potential eventuality ξ = 〈〈A〉〉Φ (resp. ξ = [[A]]Φ) belongs to H(s),
then there exists a realization witness tree, rooted at s in H for ξ = 〈〈A〉〉Φ
(resp. ξ = [[A]]Φ) at s.

Remark 6.1. The condition H6 is well defined because a Hintikka structure is
obtained by colouring via H from a deterministic concurrent game structure,
for which the notion of realization witness tree is defined.

Definition 6.2. Let H = (A, St, {Acta}a∈A, {acta}a∈A, out, H) be a CGHS and
η be an ATL+-formula. We say that H is a concurrent game Hintikka structure
for η, if η ∈ H(s) for some s ∈ St.

We now show that from any CGHS for a given formula η a CGM satisfying
η can be obtained.

Theorem 6.1. Let H = (A, St, {Acta}a∈A, {acta}a∈A, out, H) be a CGHS for a
given ATL+-formula η. Let further M = (A, St, {Acta}a∈A, {acta}a∈A, out,Prop, L)
be the CGM obtained from H by setting, for every s ∈ St, L(s) = H(s) ∩ Prop.
Then, for every s ∈ St and every ATL+ formula ϕ, ϕ ∈ H(s) implies M, s |= ϕ.
In particular, M satisfies η.

Proof. Suppose ϕ ∈ H(s). We will prove that M, s |= ϕ by induction on the
structure of the state formula ϕ.

Base. If ϕ ∈ Prop∪{⊤} belongs to H(s), it is immediate that M, s |= ϕ, by
definition of L and H1.

Inductive Step.

• ϕ is ψ1 ∧ψ2. By H2 we get that ψ1 ∈ H(s) and ψ2 ∈ H(s) . By inductive
hypothesis M, s |= ψ1 and M, s |= ψ2. Therefore M, s |= ϕ.

• ϕ is ψ1 ∨ ψ2. By H3 we get that either ψ1 ∈ H(s) or ψ2 ∈ H(s) .
By inductive hypothesis either M, s |= ψ1 or M, s |= ψ2. Therefore
M, s |= ϕ.

• ϕ is 〈〈A〉〉©ψ or [[A]]©ψ. An application of H5 and the inductive hypothesis
to ψ imply that M, s |= ϕ.

• ϕ is 〈〈A〉〉Φ or ϕ is [[A]]Φ , where Φ is a path formula whose main operator
is different from ©, that is ϕ is a γ-formula. Here we only present in
detail the first case, the second one being quite similar. We need to prove
the existence of a (perfect recall) strategy FA such that, for each branch
λ in M stemming from s and consistent with that strategy, M, λ |= Φ.
This will imply that M, s |= ϕ. Since ϕ = 〈〈A〉〉Φ ∈ H(s) by hypothesis,
then H6 guarantees the existence of a realization witness tree T on H for
ϕ. By construction, T provides a partial finite strategy FpA, defined only
for the finite set of histories occurring in T and having length strictly less
than the height of T . We want to show that FpA can be extended to a
strategy FA, defined for all the histories in H, and that T can be extended
to a possibly infinite tree T ′ such that:
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– Each node of T ′ is also a node of H and each labelled edge of T ′ is
also a labelled edge of H.

– All paths in T ′ are consistent with FA, hence T
′ witnesses the truth

of 〈〈A〉〉Φ at state s of M by instantiating the quantifier 〈〈A〉〉 to FA.

Below, we show how to construct FA and T ′. Let us consider any finite
path in T of the form λ≤n, where λ0 = s and λn is a leaf. By construction
of T , each node λi, for 1 ≤ i ≤ n, is a node of H and each labelled edge
of T is a labelled edge of H. The descendant potential eventuality ϕn of
ϕ belongs to the colour of λn by construction of T . Since λn is a node of
H and ϕn ∈ H(λn), by H4 some γ-component χ of ϕn belongs to H(λn).
This formula χ is either of the form ψ or of the form ψ ∧ 〈〈A〉〉©ϕn+1 (the
second case occurs, for instance, when ϕ has the form 〈〈A〉〉�θ).

In the first case, any extension of the partial strategy FpA and any
extension of λ≤n to an infinite path will do.

In the second case, we apply H2 to get ψ ∈ H(λn) and 〈〈A〉〉©ϕn+1 ∈
H(λn). By H5, there exists an A-action σA ∈ actA(H(λn)) such that
ϕn+1 ∈ H(s′) for all s′ ∈ Out(λn, σA). Playing this A-action σA after
the partial strategy FpA gives us a new partial strategy Fp′A defined for
histories whose length is less than or equal to n. The set of successors of
λn for T ′ is the set Out(λn, σA). For each s

′ ∈ Out(λn, σA), we can again
apply H2, H4 and H5 to get a new partial strategy Fp′′A defined for histories
whose length is inferior or equal to n + 1. For any s′ ∈ Out(λn, σA), its
successors are obtained by an application of Fp′′A. An infinite iteration
of this procedure will give us the complete strategy FA and the way to
extend the finite tree so as to get T ′.

6.2 Completeness and model synthesis

Theorem 6.2. The tableau method for ATL+ is complete.

Completeness of the procedure means that an open tableau for η implies
existence of a CGM model for η. So, we start with an open tableau T η for η
and we want to prove that η is indeed satisfiable. The proof is constructive, as
we will build from T η a Hintikka structure Hη that can be turned into a model
for η. In order to construct that Hintikka structure, first we will extract special
T η-trees associated with potential eventualities, that can be seen as building
modules to be used to construct the entire structure. Eventually, we show that
the so constructed structure is a Hintikka structure for η.

First, we need to define edge-labelling of a tree.

Definition 6.3. Let W = (W, ) be a tree and Y be a non-empty set. An
edge-labelling of W by Y is a mapping l from the set of edges of W to the set
of non-empty subsets of Y .
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Definition 6.4. Given a tableau T η, a tree W = (W, ) is a T η-tree if the
following conditions hold:

• W is Sη-coloured, by some colouring mapping c.

• W is edge-labelled by
⋃

(∆∈Sη) actA(∆), by some edge-labelling mapping
l;

• l(w  w′) ⊆ actA(∆) for every w ∈ W with c(w) = ∆;

• For every interior node w ∈W with c(w) = ∆ and every successor ∆′ ∈ T η

of ∆, there exists exactly one w′ ∈ W such that l(w  w′) = {σ | ∆
σ

−→
∆′)}.

Definition 6.5. Let ∆ ∈ Sη. A T η-tree W is rooted at ∆ if the root r of W is
coloured with ∆.

For the purpose of our construction, we distinguish two kinds of T η-trees:
simple or realizing. Their definitions are given below. Realizing T η-trees will
deal especially with potential eventualities.

Definition 6.6. A tree W = (W, ) is simple if it has no interior nodes except
the root.

Simple T η-trees can be seen as one-step modules.

Definition 6.7. Let W = (W, ) be a T η-tree rooted at ∆ and ξ ∈ ∆ a
potential eventuality. The tree W is a realizing T η-tree for ξ, denoted Wξ, if
there exists a subtree Rξ of W rooted at ∆ such that Rξ is a realization witness
tree for ξ rooted at ∆ ∈ T η.

Lemma 6.1. Let ∆ ∈ Sη. Then, there exists a simple T η-tree rooted at ∆.

Proof. We construct a simple T η-tree W rooted at ∆ as follows. The root of
W is a node r such that c(r) = ∆. For every successor state ∆′ of ∆ ∈ T η, let

Moves(∆,∆′) = {σ | ∆
σ

−→ ∆′}. Note that, by construction of the tableau, the
family {Moves(∆,∆′) | ∆′ is a successor of ∆} is a partition of the set actA(∆)
of all action profiles applied at ∆. Now, for each set X of that family we select
one successor ∆′ of ∆ such that X = act(∆,∆′) and add a successor t to W

such that c(t) = ∆′ and l(r t) = {σ | ∆
σ

−→ ∆′}.

Example 6.1. (Continuation of Example 4.7)
Consider the final tableau T ϑ for the formula ϑ = 〈〈1〉〉(pUq∨�q)∧ [[2]](♦p∧

�¬q).
We have seen in the example 4.7 that Sϑ = {∆1, . . . ,∆8}.
We have listed possible simple T ϑ-trees rooted at each ∆i in the table on

Figure 10.

To show the existence of a realizing T η-tree for ξ at ∆, we first prove the
existence of a realization witness tree Rξ for ξ at ∆.
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∆1

∆3

∆5

0, 0

0, 1

1, 0

1, 1

∆2

∆3

∆7

0, 0

0, 1

1, 0

1, 1

∆3 ∆4
0, 0

∆4 ∆8
0, 0

∆5 ∆5
0, 0

∆6 ∆7
0, 0

∆7 ∆7
0, 0

∆8 ∆8
0, 0

Figure 10: Simple T ϑ-trees

Lemma 6.2. Let T η be a tableau for η and ξ be a potential eventuality realized
at ∆ ∈ T η. Then, there exists a realization witness tree Rξ for ξ at ∆ in T η.

Proof. We give detailed proof only for the case where ξ = 〈〈A〉〉Φ; the other case
is similar, just replace 〈〈A〉〉 by [[A]] in the proof. Suppose that ξ is realized at
∆ in T η. We define the rank of ξ at ∆ in T η, denoted rank(ξ,∆, T η) to be the
minimal length of a chain of descendant potential eventualities ξ = ξ0, ..., ξn =
〈〈A〉〉©Φn ensuring the realization of ξ, that is, Real(Φn,∆j) = true for some
state ∆j descendant of ∆ in T η. We prove the existence of a realization witness
tree R for ξ at ∆ in T η by induction on rank rank(ξ,∆, T η).

Base: rank(ξ,∆, T η) = 0. Here ξ is immediately realized and Rξ contains
only the root coloured with ∆.

Inductive step: rank(ξ,∆, T η) = k where k > 0. Since ξ is realized at
∆ ∈ T η and rank(ξ,∆, T η) > 0, by Definition 4.2 we have that for every

σ ∈ D(∆, 〈〈A〉〉©ξ1) there exists ∆′ ∈ T η such that ∆
σ

−→ ∆′ and ξ1 is realized
at ∆′ ∈ T η. We build a tree T rooted at a node r coloured with ∆ where the
children v of r are coloured bijectively with the set of ∆′ obtained above. Then
rank(ξ1,∆′, T η) = k − 1 and we can apply the inductive hypothesis to obtain
a realization witness tree Rξ1 for ξ1 at ∆′ in T η for each ∆′. Thus, replacing
each node v of T by the corresponding Rξ1 gives us Rξ.

Lemma 6.3. Let ξ ∈ ∆ ∈ Sη be a potential eventuality. Then, there exists a
finite realizing T η-tree for ξ rooted at ∆.

Proof. Since T η is open, ξ is realized at ∆ in T η. To construct the realizing
T η-tree Wξ for ξ rooted at ∆, we start from the realization witness tree Rξ,
whose existence is given by Lemma 6.2 and provisionally we take Wξ to be Rξ.
The problem with Rξ is that for some σ ∈ actA(∆) at some node w of Rξ ,
there is no edge w  w′ such that l(w  w′) ∋ σ. Therefore, to extend Wξ

into a realizing T η-tree, for every such node w, we pick one of the successor
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states of c(w) via σ, say ∆′ and add a node w′ to Wξ such that c(w′) = ∆′ and
l(w w′) ∋ σ.

Example 6.2. (Continuation of Example 6.1) We now extract in Figure 11 a
possible realizing tree from the open tableau for every state ∆i, using realization
witness trees.

We now construct a final structure, denoted by F, from simple and realizing
T η-trees. This construction is made step-by-step. At the end of the construc-
tion, we prove that F is indeed a Hintikka structure.

Step 1. We define a grid F of size m × n, where m is the number of
eventualities occurring in T η and n the number of states of T η. Each row of
that grid is labelled by one of the potential eventualities and each column by
a state of T η previously ordered by name (∆i < ∆j if i < j). We denote by
ξi the eventuality associated to row 0 ≤ i ≤ m, we denote by ∆j the state
associated to the column 0 ≤ j ≤ n. The content F(i, j) of each intersection
between a row i and a column j of F is as follows: if ξi ∈ ∆j , then F(i, j) is
the realizing T η-tree for ξi rooted at ∆j , whose existence is ensured by Lemma
6.3; otherwise, F(i, j) is the simple T η-tree rooted at ∆j , whose existence is
ensured by Lemma 6.1.

Example 6.3. (Continuation of Example 6.2) The grid F for our example has
a size 4× 8 and is represented in Figure 12.

Step 2. We make a queue Q that will contain potential eventualities occur-
ring in T η. The first element of Q is either η, if η is a potential eventuality, or
the potential eventuality associated to the first column of the grid defined just
above. Let ξi be the first element of the queue, so that Q(0) = ξi. Then we
add to Q all the potential eventualities following the order of grid’s rows and
cycling if necessary, that is Q(k) = ξ((i+k) mod m) for k ∈ [1,m− 1].

Step 3. Let ∆ be one of the states containing η. Next, we take the element
F(Q(0),∆) of the grid. The root of F(Q(0),∆) is then the root of F. Then we
take one-by-one in order all the elements of the rest of the queue and do the
following:

Let Q(i) be the current element of the queue to be treated. For every dead-
end state w ∈ F, that is a state without successors, such that c(w) = ∆j , we
add the tree F(Q(i),∆j) by identifying the dead-end state w with the root of
F(Q(i),∆j);

Example 6.4. From the grid F , we can extract in four steps a partial structure
F realizing all the eventualities (see Figure 13).

Step 4. Finally, we ensure that F finite. While there is a dead-end state
in F, say w with c(w) = ∆j , we choose a component from the row F(∆j) as
follows:
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State Eventualities Rank Realization Witness Tree Realizing Tree

∆1 ξ1 = 〈〈1〉〉(pUq ∨�q) 1
∆1 ∆4

0, 0

0, 1

∆1

∆4

∆5

0, 0

0, 1

1, 0

1, 1

∆1 ξ2 = [[2]](♦p ∧�¬q) 1
∆1 ∆6

1, 0

1, 1

∆1

∆4

∆6

0, 0

0, 1

1, 0

1, 1

∆2 ξ1 = 〈〈1〉〉(pUq ∨�q) 1
∆2 ∆4

0, 0

0, 1

∆2

∆4

∆7

0, 0

0, 1

1, 0

1, 1

∆2 ξ2 = [[2]](♦p ∧�¬q) 1
∆2 ∆7

1, 0

1, 1

∆2

∆4

∆7

0, 0

0, 1

1, 0

1, 1

∆3 ξ3 = ξ11 = 〈〈1〉〉pUq 1 ∆3 ∆4
0, 0

∆3 ∆4
0, 0

∆4 ξ3 = ξ11 = 〈〈1〉〉pUq 0 ∆4
∆4 ∆8

0, 0

∆5 ξ2 = [[2]](♦p ∧�¬q) 1 ∆5 ∆6
0, 0

∆5 ∆6
0, 0

∆6 ξ2 = [[2]](♦p ∧�¬q) 0 ∆6
∆6 ∆7

0, 0

∆7 ξ4 = ξ12 = [[2]]�¬q 0 ∆7
∆7 ∆7

0, 0

Figure 11: Eventualities and realizing T ϑ-trees
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F 0 1 2 3
ξ1 ξ2 ξ3 ξ4

0 ∆1

∆1

∆4

∆5

0, 0

0, 1

1, 0

1, 1

∆1

∆4

∆6

0, 0

0, 1

1, 0

1, 1

∆1

∆3

∆5

0, 0

0, 1

1, 0

1, 1

∆1

∆3

∆5

0, 0

0, 1

1, 0

1, 1

1 ∆2

∆2

∆4

∆7

0, 0

0, 1

1, 0

1, 1

∆2

∆4

∆7

0, 0

0, 1

1, 0

1, 1

∆2

∆3

∆7

0, 0

0, 1

1, 0

1, 1

∆2

∆3

∆7

0, 0

0, 1

1, 0

1, 1

2 ∆3
∆3 ∆4

0, 0

∆3 ∆4
0, 0

∆3 ∆4
0, 0

∆3 ∆4
0, 0

3 ∆4
∆4 ∆8

0, 0

∆4 ∆8
0, 0

∆4 ∆8
0, 0

∆4 ∆8
0, 0

4 ∆5
∆5 ∆5

0, 0

∆5 ∆6
0, 0

∆5 ∆5
0, 0

∆5 ∆5
0, 0

5 ∆6
∆6 ∆7

0, 0

∆6 ∆7
0, 0

∆6 ∆7
0, 0

∆6 ∆7
0, 0

6 ∆7
∆7 ∆7

0, 0

∆7 ∆7
0, 0

∆7 ∆7
0, 0

∆7 ∆7
0, 0

7 ∆8
∆8 ∆8

0, 0

∆8 ∆8
0, 0

∆8 ∆8
0, 0

∆8 ∆8
0, 0

Figure 12: The grid F
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Eventualities Added grid elements Partial structure F

{ξ1, ξ2, ξ3, ξ4} F(ξ1,∆1)

∆1

∆4

∆5

0, 0

0, 1

1, 0

1, 1

{ξ2, ξ3, ξ4} F(ξ2,∆4);F(ξ2,∆5)

∆1

∆4

∆5 ∆6

∆8
0, 0

0, 1

1, 0

1, 1

0, 0

0, 0

{ξ3, ξ4} F(ξ3,∆8);F(ξ3,∆6)

∆1

∆4

∆5 ∆6

∆8

∆7

∆8
0, 0

0, 1

1, 0

1, 1

0, 0

0, 0 0, 0

0, 0

{ξ4} F(ξ4,∆8);F(ξ4,∆8)

∆1

∆4

∆5 ∆6

∆8

∆7

∆8

∆7

∆8
0, 0

0, 1

1, 0

1, 1

0, 0

0, 0 0, 0

0, 0

0, 0

0, 0

Figure 13: Eventualities and partial structures
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∆1

∆4

∆5 ∆6

∆8

∆7

∆8
0, 0

0, 1

1, 0

1, 1

0, 0

0, 0 0, 0

0, 0

0, 0

0, 0

Figure 14: The final structure F for the formula ϑ = 〈〈1〉〉(pUq ∨�q)∧ [[2]](♦p∧
�¬q)

S1{p}

S2

{q}

S3

∅

S4

{p}

S5

{p, q}

S6

∅

S7

{p, q}

0, 0

0, 1

1, 0

1, 1

0, 0

0, 0 0, 0

0, 0

0, 0

0, 0

Figure 15: Concurrent game model satisfying ϑ

• With priority we choose a component F(i,∆j), 0 ≤ i ≤ m already occur-
ring in F. Let r be the root of the component F(i,∆j), 0 ≤ i ≤ m inside
F. Then we add an arrow  between every predecessor v of w and the
root r and labelled this arrow with l(v  w). Then we delete the node
w ∈ F.

• Otherwise, if the chosen component F(i,∆j) is not already occurring in
F then we add the new component to F as usual by merging the root of
the component with the dead-end state w.

When there are no longer dead-ends in F, the structure is completed and we
have obtained our final structure.

Example 6.5. The final structure F for the formula ϑ = 〈〈1〉〉(pUq ∨ �q) ∧
[[2]](♦p ∧�¬q) is given in Figure 14.

By keeping only the propositional variables in the state labels we obtain the
following concurrent game model satisfying ϑ in Figure 15.

Lemma 6.4. Let T be a T η-tree rooted at ∆ = c(w). Then, the following holds:

1. If 〈〈A〉〉©ϕ ∈ ∆, then there exists an A-action σA ∈ actA(∆) such that
ϕ ∈ c(w′) = ∆′ where l(w w′) ∋ σ for every σ ⊒ σA.
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2. If [[A]]©ϕ ∈ ∆ then there exists a co-A-action σcA ∈ actcA(∆) such that
ϕ ∈ c(w′) = ∆′ where l(w w′) ∋ σ for every σ ⊒ σcA(σA).

Proof. We recall that all successor formulae of ∆ ∈ Sη are ordered at the ap-
plication of the rule (Next) to ∆.

(1) Suppose that 〈〈A〉〉©ϕ ∈ ∆. Then the required A-action is σA[〈〈A〉〉©ϕ].
Indeed, it immediately follows from the rule (Next) that for every σ ⊒ σA
in the pretableau Pη, if ∆

σ
−→ Γ, then ϕ ∈ Γ and ϕ ∈ ∆′ since ∆′ is a full

expansion of Γ. The statement (1) of the lemma follows.
(2) Suppose that [[A]]©ϕ ∈ ∆. There are two cases to consider:
case 1: A 6= A. We consider an arbitrary σA ∈ actA(∆). Then σA can

be extended to a action vector σ′ ⊒ σ. Let N(σA) be the set {i | σA(i) ≥
m}, where m is the number of enforceable successor formulae in ∆, and let

co(σA) =
(

∑

i∈N(σA)(σA(i)−m))
)

mod l, where l is the number of unavoidable

successor formulae in ∆. Now, we consider σ′ ⊒ σA defined as follows: σ′
b = ((q−

co(σA)) mod l+m and σ′
a′ = m for any a′ ∈ A−(A∪{b}), where b ∈ A−A. Thus,

we have A−A ⊆ N(σ) and also co(σ′) = (co(σA)+(q−co(σA))) mod l)+m = q.
Therefore, for this arbitrarily chosen σA there exists at least one state, say ∆′,
such that ∆

σ
−→ ∆′ and ϕ ∈ ∆′.

Case 2: A = A. Then, by virtue of (H2), 〈〈∅〉〉©¬ϕ ∈ ∆ and thus, by the rule
(Next), ¬ϕ ∈ Γ for every successor Gamma of ∆. Then, ¬ϕ ∈ ∆′ for every ∆′

that is a successor of ∆ in T η and hence the colouring set of every leaf of T .
Then, the (unique) co-A-actions, which is an identity function, has the required
properties.

The statement (2) of the lemma follows.

Theorem 6.3. If T η is open, then η is satisfiable.

Proof. The structure F constructed from T η is a Hintikka structure. Indeed,
H1-H4 of Definition 6.1 are satisfied since the nodes of F are nodes of T η. H5
of the same definition essentially follows from Lemma 6.4. Whenever a node
w of F contains a potential eventuality ξ, this means that this eventuality will
stay in the queue (see construction of F above) until realized. Moreover, if the
T η-tree W chosen to complete F from w does not realize ξ, either ξ or one of
its descendants is present in each newly generated dead-end of F. So, when it
is the turn to realize ξ we add to each dead-end state the realizing T η-tree for
ξ. This, together with Lemma 6.4, guarantees that there exists a realization
witness tree for ξ on F at w. Thus, H6 of Definition 6.1 is satisfied, too.

By construction, the structure F is a concurrent game Hintikka structure for
η, thus Theorem 6.1 can be applied to obtain from it a model for η. Thus η is
satisfiable.

6.3 Complexity

Theorem 6.4. The tableau procedure for ATL+ runs in 2EXPTIME.
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Proof. The argument generally follows the calculations computing the complex-
ity of the tableau method for ATL in Section 4.7 of [9], with one essential differ-
ence: ‖cl(η)‖ for any ATL formula η is linear in its length |η|, whereas ‖cl(η)‖ for
an ATL+ formula η can be exponentially large in |η|, as shown after Lemma 3.2.
This exponential blow-up, combined with the worst-case exponential in ‖cl(η)‖
number of states in the tableau, accounts for the 2EXPTIME worst-case com-
plexity of the tableau method for ATL+, which is the expected optimal lower
bound. It is also an upper bound for the tableau method, because no further ex-
ponential blow-ups occur in the prestate- and state-elimination phases.

There are various ways to restrict or parametrize the set of ATL+ formulae
in order to avoid the exponential blow-up of their closure sets. As suggested by
the example after Lemma 3.2, the main cause for that blow-up of the number
of γ-components of γ-formulae ϕ = 〈〈A〉〉Φ or ϕ = [[A]]Φ in ATL+ is the nesting
of conjunctions and disjunctions in the path formula Φ which are not separated
by temporal operators. Let us call the number of such nestings the superficial
Boolean depth of Φ and denote it by δ0(Φ). Then, let the nested Boolean depth of
any ATL+ formula Ψ, denoted δ(Ψ), be the maximal superficial Boolean depth
δ0(Φ) of a path sub-formula Φ of Ψ. For instance, δ(〈〈1〉〉©〈〈1〉〉(pU¬q)) = 0,
δ(〈〈1〉〉(�p ∨ ((q ∧ p)U¬q)) = 1, δ(〈〈1〉〉(♦q ∧ (�p ∧ (q U¬q))) = 2. Now, if this
number for a formula η is bounded above, the size of the closure ‖η‖ becomes
polynomially bounded in |η| because the nesting of ∧ and ∨ when they are
separated by a temporal operator does not have a multiplicative effect on the
number of γ-components. Consequently, the complexity of the tableau method
is reduced to single exponential time, caused only by the maximal possible
number of states in the tableau, just like in ATL. Thus, we have the following.

Proposition 6.1. The tableau procedure for ATL+ applied to a class of ATL+

formulae of bounded nested Boolean depth runs in EXPTIME.

Corollary 6.1. The tableau procedure for ATL+ applied to ATL formulae runs
in EXPTIME.

7 Concluding remarks

Here we have developed sound, complete and terminating tableau-based decision
method for constructive satisfiability testing of ATL+ formulae and have argued
for its practical usability and implementability. The method is amenable to
further extension to the full ATL∗, but this is left to future work.

Some comparison with the automata-based method for satisfiability test-
ing in ATL∗, presented in [12] are in order. The two methods appear to be
quite different and, though eventually working in the same worst-case complex-
ity, the double exponential blow-ups seem to occur in different ways, namely,
in the automata-based method, one exponential blow-up occurs in converting
the formula into an automaton, while the other is in the time complexity of
checking non-emptiness of the resulting automaton. It would be instructive to
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compare the practical implications and efficiency of both methods and we leave
such systematic comparison to the future, when (hopefully) both methods are
implemented. For now, we only mention that the formula θ from our running
example, the tableau for which is worked out explicitly and in detail in this
paper, is translated with the method from [12] into an automaton with 212 al-
phabet symbols and over 100 states. Of course, this comparison cannot serve
as an argument for general practical superiority in efficiency of the tableau-
based method. Still, the technical details of both methods, illustrated in that
example, indicate that, while the worst-case exponential blow-ups are bound
to occur in both methods, they seem to be more controllable and avoidable in
the tableau-based method, at the expense of its lesser automaticity and higher
degree of user control. Thus, we would argue that both methods have generally
incomparable pros and cons, and consequently are of independent interest, both
theoretically and practically.

Acknowledgements. We thank the anonymous reviewers of [3] and of this
paper for their helpful remarks and suggestions and for several corrections.
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