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Abstract. The problem of finding an optimal vertex cover in a graph is a classic NP-complete problem,
and is a special case of the hitting set question. On the other hand, the hitting set problem, when asked
in the context of induced geometric objects, often turns out to be exactly the vertex cover problem
on restricted classes of graphs. In this work we explore a particular instance of such a phenomenon.
We consider the problem of hitting all axis-parallel slabs induced by a point set P , and show that it
is equivalent to the problem of finding a vertex cover on a graph whose edge set is the union of two
Hamiltonian Paths. We show the latter problem to be NP-complete, and we also give an algorithm
to find a vertex cover of size at most k, on graphs of maximum degree four, whose running time is
1.2637knO(1).

1 Introduction

Let P be a set of n points in R
2 and let R be the family of all distinct objects of a particular kind (disks,

rectangles, triangles, . . . ), such that each object in R has a distinct tuple of points from P on its boundary.
For example, R could be the family of

(

n
2

)

axis parallel rectangles such that each rectangle has a distinct
pair of points of P as its diagonal corners. R is called the set of all objects induced (spanned) by P .

Various questions related to geometric objects induced by a point set have been studied in the last few
decades. A classical result in discrete geometry is the First Selection Lemma [1] which shows that there
exists a point that is present in a constant fraction of triangles induced by P . Another interesting question
is to compute the minimum set of points in P that “hits” all the induced objects in R. This is a special case
of the classical Hitting Set problem, which we will refer to as Hitting Set for Induced Objects.

For most geometric objects, it is not known if the Hitting Set for induced objects problem is polynomially
solvable. It is known to be polynomial solvable for skyline rectangles and halfspaces. Recently, Rajgopal et
al [12] showed that this problem is NP-complete for lines.

The problem of finding an optimal vertex cover in a graph is a classic NP-complete problem, and is a special
case of the Hitting Set problem. On the other hand, the hitting set for induced objects problem often turns
out to be exactly the vertex cover problem, even on restricted classes of graphs. For example, the problem
of hitting set for induced axis-parallel rectangles is equivalent to the vertex cover on the Delaunay graph of
the point set with respect to axis-parallel rectangles.

We study a particular phenomenon of this type, where the hitting set question in the geometric setting boils
down to a vertex cover problem on a structured graph class. We consider the problem of hitting set for
induced axis-parallel slabs (rectangles whose horizontal or vertical sides are unbounded). Note that this is
even more structured than general axis-parallel rectangles, and indeed, it turns out that the corresponding
Delaunay graph has a very special property — its edge set is the union of two Hamiltonian paths. Since
any hitting set for the class of axis-parallel slabs induced by a point set P is exactly the vertex cover of the
Delaunay graph with respect to axis-parallel slabs for P , our problem reduces to solving vertex cover on the
class of graphs whose edge set is simply the union of two Hamiltonian Paths.

Despite the appealing structure, we show that – surprisingly – deciding k-vertex cover on this class of graphs
is NP-complete. This involves a rather intricate reduction from the problem of finding a vertex cover on
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cubic graphs. We also appeal to the fact that the edge set of four-regular graphs can be partitioned into two
two-factors, and the main challenge in the reduction involves stitching the components of the two-factors
into two Hamiltonian paths while preserving the size of the vertex cover in an appropriate manner.

Having established the NP-hardness of the problem, we pursue the question of improved fixed-parameter
algorithms on this special case. Vertex Cover is one of the most well-studied problems in the context of
fixed-parameter algorithm design, it enjoys a long list of improvements even on special graph classes. We
note that for Vertex Cover, the goal is to find a vertex cover of size at most k in time O(ck), and the
“race” involves exploring algorithms that reduce the value of the best known constant c.

In particular, even for sub-cubic graphs (where the maximum degree is at most three, and the problem re-
mains NP-complete), Xiao [14] proposed an algorithm with running time O⋆(1.1616k), improving on the pre-
vious best record [5] ofO⋆(1.1940k) by Chen, Kanj and Xia, and prior to this, Razgon [13] had aO⋆(1.1864k).
The best-known algorithm for Vertex Cover [4] on general graphs has a running time of O(1.2738k + kn)
and uses polynomial-space.

Typically, these algorithms involve extensive case analysis on a cleverly designed search tree. In the second
part of this work, we propose a branching algorithm with running time O⋆(1.2637k) for graphs with maximum
degree bounded by at most four. This improves the best known algorithm for this class, which surprisingly
has been no better than the algorithm for general graphs. We note that this implies faster algorithms for the
case of graphs that can be decomposed into the union of two Hamiltonian Paths (since they have maximum
degree at most four), however, whether they admit additional structure that can be exploited for even better
algorithms remains an open direction.

2 Preliminaries

In this section, we state some basic definitions and introduce terminology from graph theory and algorithms.
We also establish some of the notation that will be used throughout.

We denote the set of natural numbers by N and set of real numbers by R . For a natural number n, we use [n]
to denote the set {1, 2, . . . , n}. For a finite set A we denote by SA the set of all permutations of the elements
of set A. To describe the running times of our algorithms, we will use the O∗ notation. Given f : N → N,
we define O∗(f(n)) to be O(f(n) · p(n)), where p(·) is some polynomial function. That is, the O∗ notation
suppresses polynomial factors in the running-time expression.

Graphs. In the following, let G = (V,E) be a graph. For any non-empty subset W ⊆ V , the subgraph of G
induced by W is denoted by G[W ]; its vertex set is W and its edge set consists of all those edges of E with
both endpoints in W . For W ⊆ V , by G \W we denote the graph obtained by deleting the vertices in W
and all edges which are incident to at least one vertex in W .

A vertex cover is a subset of vertices S such that G\S has no edges. We denote a vertex cover of size at most k
of a graph G by k−V C(G). For v ∈ V we denote the open-neighborhood of v by N(v) = {u ∈ V |(u, v) ∈ E},
closed-neighborhood of v by N [v] = N(v) ∪ {v}, second-open neighborhood by N2(v) = {u ∈ V |∃u′ ∈ N(v)
s.t. (u, u′) ∈ E} second-closed neighborhood by N2[v] = N2(v) ∪N [v].

When we are discussing a pair of vertices u, v, then the common neighborhood of u and v is the set of vertices
that are adjacent to both u and v. In this context, a vertex w is called a private neighbor of u if (w, u) is an
edge and (w, v) is not an edge. We denote the degree of a vertex v ∈ V by d(v).

A path in a graph is a sequence of distinct vertices v0, v1, . . . , vk such that (vi, vi+1) is an edge for all
0 ≤ i ≤ (k − 1). A Hamiltonian path of a graph G is a path featuring every vertex of G. The following class
of graphs will be of special interest to us.
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Definition 1 (Braid graphs). A graph G on the vertex set [n] is a braid graph if the edges of the graph
can be covered by two Hamiltonian paths. In other words, there exist permutations σ, τ of the vertex set for
which E(G) = {(σ(i), σ(i + 1)) | 1 ≤ i ≤ n− 1} ∪ {(τ(i), τ(i + 1)) | 1 ≤ i ≤ n− 1}.

Induced axis-parallel slabs: Axis-parallel slabs are a special class of axis-parallel rectangles where two horizon-
tal or two vertical sides are unbounded. Each pair of points p(x1, y1) and q(x2, y2) induces two axis-parallel
slabs of the form [x1, x2]×(−∞,+∞) and (−∞,+∞)×[y1, y2]. LetR represent the family of 2

(

n
2

)

axis-parallel
slabs induced by P .

We refer the reader to [7] for details on standard graph theoretic notation and terminology we use in the
paper.

Parameterized Complexity. A parameterized problem Π is a subset of Γ ∗ ×N, where Γ is a finite alphabet.
An instance of a parameterized problem is a tuple (x, k), where x is a classical problem instance, and k
is called the parameter. A central notion in parameterized complexity is fixed-parameter tractability (FPT)
which means, for a given instance (x, k), decidability in time f(k) · p(|x|), where f is an arbitrary function
of k and p is a polynomial in the input size.

3 Hitting Set for Induced Axis-Parallel Slabs

We show here that the problem of finding a hitting set of size at most k for the family of all axis-parallel
slabs induced by a point set is equivalent to the problem of finding a vertex cover of a graph whose edges
can be partitioned into two Hamiltonian Paths. In subsequent sections, we establish the NP-hardness of the
latter problem, and also provide better FPT algorithms. Due the equivalence of these problems, we note that
both the hardness and the algorithmic results apply to the problem of finding a hitting set for induced axis
parallel slabs.

Lemma 1. An instance of k-vertex cover in a braid graph G = (V,E) with permutations σ, τ ∈ SV can be
reduced to the problem of finding a hitting set for the collection of all axis-parallel slabs induced by a point
set. d

Proof (Sketch). Given an instance of Vertex Cover on a braid graph G with permutations σ and τ , we create
n points in R

2 in an (n × n)-grid as follows. We assume, by renaming if necessary, that σ is the identity
permutation. For every 1 ≤ i ≤ n, we let pi = (i, τ−1(i)). Since we only need to hit empty vertical and
horizontal slabs, in the induced setting this amounts to hitting all consecutive slabs in the horizontal and
vertical directions. It is easy to check that a hitting set for such slabs would exactly correspond to a vertex
cover of G. ⊓⊔

Lemma 2. The problem of finding a hitting set for all induced axis-parallel slabs by a point set P can be
reduced to the problem of finding a Vertex Cover in a braid graph.

Proof. From the given point set P , we sort the points in P according to their x-coordinates to obtain a
permutation of the point set σ. Similarly, we sort with respect to y-coordinate to get a permutation τ . Note
that there exists a empty axis-parallel slab between two points if and only if they are adjacent with respect
to at least one of the x- or y-coordinates, These are, on the other hand, precisely the edges in the braid
graph with σ and τ as the permutations, which shows the equivalence. ⊓⊔
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4 NP-completenes of Vertex Cover on Braids

In this section, we show that the problem of determining a vertex cover on the class of braids is hard even
when the permutations of the braid are given as input.

The intuition for the hardness is the following. Consider a four-regular graph. By a theorem of Peterson, we
know that the edges of such a graph can be partitioned into two sets, each of which would be a two-factor
in the graph G. In other words, every four-regular graph can be thought of as a union of two collections
of disjoint cycles, defined on same vertex set. It is conceivable that these cycles can be patched together
into paths, leading us to a braid graph. As it turns out, for such a patching, we need to have some control
over the cycles in the decomposition to begin with. So we start with an instance of Vertex Cover on a cubic
2-connected planar graphs, morph such an instance to a four-regular graph while keeping track of a special
cycle decomposition, which we later exploit for the “stitching” of cycles into Hamiltonian paths.

Formally, therefore, the proof is by a reduction from Vertex Cover on a cubic 2-connected planar graph to an
instance of k-vertex cover on a braid graph, noting that [10] shows the NP-hardness of Vertex Cover for cubic
planar 2-connected graphs. We describe the construction in two stages, first showing the transformation to
a four-regular graph and then proceeding to illustrate the transformation to a braid graph.

Transforming 2-connected cubic planar graphs to 4-regular graphs. Consider an instance of vertex cover on a
cubic 2-connected planar graph G = (V,E), where |V | = n. We transform this graph to a four-regular graph
in two steps. This transformation is important because for turning a four-regular graph into a union of two
Hamiltonian paths, we need the underlying decomposition into two-factors to have certain properties, which
we will ensure in the first half of the reduction.

The transformation from cubic graphs to four-regular graphs happens in two stages. First, we replace certain
edges with gadgets that only serve to elongate certain paths in the graph. This is a technical artifact that will
be useful later. Next, we add gadgets that increase the degree of every vertex so as to obtain a four-regular
graph.

We begin by making two copies of G, say, Gu and Gv. Here, we let Gu = (Vu, Eu), Gv = (Vv , Ev), Vu =
{u0, u1, ..., un−1}, Vv = {v0, v1, ..., vn−1} and let f : Vu → Vv be a function with ui 7→ vi, 0 ≤ i < n,
determining the graph isomorphism from Gu to Gv.

b b b b b bb b
xi x′

i
sxi

axi bxi
b′
xi

a′
xi

txi

Fig. 1. Figure: Gadget Jxi
with solid lines showing gadget edges and dotted lines its connection to outside vertices.

It is shown in [6] that a planar cubic graph with no cut edge has exponentially many perfect matchings.
Since we have a 2-connected cubic planar graph, there are evidently no cut edges. Therefore, we compute
a perfect matching Mu = {(u0, u

′
0), (u1, u

′
1), ..., (un

2
−1, u

′
n

2
−1)} of Gu by the algorithm given in [9]. Let the

corresponding matching of Gv be Mv = {(v0, v
′
0), (v1, v

′
1), ..., (vn

2
−1, v

′
n

2
−1

)}.

For x ∈ {u, v} we now describe how to construct Ĝx from Gx. We use gadget Jxi
shown in Figure 1, where

subscript xi corresponds to graph Gx and edge (xi, x
′
i). In Lemma 3 we show the minimum number of

vertices required to cover edges in E(Jxi
) ∪ {(xi, sxi

), (x′
i, txi

)} based on whether xi, x
′
i are picked in the

vertex cover or not. We define the sequence ρ(Jxi
) := (sxi

, axi
, bxi

, b′xi
, a′xi

, txi
), notice that this is a path

in Jxi
and we also have the sequence ρ′(Jxi

) := (sxi
, txi

, bxi
, a′xi

, axi
, b′xi

, sxi
), which is a cycle in Jxi

. It is
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easy to see that all edges in Jxi
is either in the path ρ(Jxi

) or on the cycle ρ′(Jxi
). We will refer to these

sequences later, when we are specifying how the reduced graph is an union of two Hamiltonian paths.

To construct Ĝx we initially set Ĝx = Gx. Fix the matching Mx = {(x0, x
′
0), (x1, x

′
1), ..., (xn

2
−1, x

′
n

2
−1

)}. We

are going to replace every edge in this matching with the gadget Jxi
. More formally, we have:

V (Ĝx) = V (Ĝx)
⊎





⋃

0≤i<n/2

V (Jxi
)





and

E(Ĝx) = E(Ĝx)r





⋃

0≤i<n/2

{(xi, x
′
i)}





⊎





⋃

0≤i<n/2

E(Jxi
) ⊎ {(xi, sxi

), (txi
, x′

i)}



 .

We first have the following observation.

Lemma 3. Consider the graph Ji = (V (Jxi
) ⊎ {xi, x

′
i}, E(Jxi

) ⊎ {(xi, sxi
), (txi

, x′
i)}) described above. Let S

be an optimal vertex cover, and let Si denote S ∩ V (Jxi
). If S includes at least one of xi, x

′
i, then |Si| = 4,

else |Si| = 5.

Proof. The vertices axi
, bxi

, b′xi
, a′xi

induced a K4, therefore any vertex cover includes at least 3 vertices
among them. The following cases arise depending on whether xi, x

′
i is included in S or not.

case 1 If xi, x
′
i /∈ S then we are forced to include sxi

, txi
in Si. So we need at least give vertices in Si and note

that X := {sxi
, txi

, axi
, a′xi

, bxi
} is a set of five vertices that covers all edges in E(Ji).

case 2 Suppose S picks exactly one of xi and x′
i. In particular, let’s say that xi /∈ S, then we have sxi

. Therefore,
we need at least four vertices in Si. Note also that X := {sxi

, axi
, bxi

, a′xi
} is a set of four vertices that

covers all edges in E(Ji).
case 3 Finally, let xi, x

′
i ∈ S. Since (sxi

, tx′

i
) ∈ E(Ji), at least one of s, t should be in S. The rest of the argument

is analogous to the previous case.

⊓⊔

In the next Lemma, we establish the relation between the vertex cover of Gx and vertex cover of Ĝx.

Lemma 4. For x ∈ {u, v}, the graph Gx admits a vertex cover of size p if, and only if, the graph Ĝx has a
vertex cover of size (p+ 2n).

Proof. In the forward direction, consider a vertex cover Vc of Gx. Note that for every matching edge (xi, x
′
i) ∈

Mx, Vc ∩ {xi, x
′
i} 6= ∅. So for each Jxi

corresponding to (xi, x
′
i) ∈ Mx we need exactly four more vertices to

cover E(Jxi
) ∪ {(xi, sxi

), (txi
, x′

i)} by Lemma 3. But |Mx| = n/2, so p+ 4n
2
= p+ 2n vertices are sufficient

to cover E(Ĝx).

In the reverse direction, let Vc be a vertex cover of size (p+ 2n) for Ĝx, and let V ′ = Vc ∩ V (Gx). Then V ′

covers all edges in Gx except possibly edges (xi, x
′
i) ∈ Mx. For each gadget Jxi

inserted between (xi, x
′
i) ∈ Mx

we know if both of xi, x
′
i /∈ Vc then from lemma 3 we require five additional vertices to cover E(Ĝx) ∪

{(xi, sxi
), (txi

, x′
i)}. For covering the edge xi, x

′
i in Gx we need at least one of xi, x

′
i, so we modify Vc to

include any one of xi, x
′
i and four more vertices from V (Jxi

) (note that the size of the vertex cover remains
unchanged after this operation). After repeating this operation for all matching edges where it is necessary,
we have that V ′ forms a vertex cover of size p for Gx. ⊓⊔

5



We now turn to the gadgets that add to the degree of every vertex in the graph, turning it into a four-
regular graph. For this we need a new gadget, which we refer to as J̃i (indexed by i), as shown in figure
2. Here irrespective of whether u′

i, v
′
i, ui+1, vi+1 is included or not we require 6 vertices as pi, qi,mi, ni and

p′i, q
′
i,m

′
i, n

′
i induce complete graphs. Further, we can include mi, ni,m

′
i, n

′
i, pi, p

′
i in vertex cover to cover

edges incident to vertices in V (Ji), and we will also cover any of the edges connecting these vertices to the
rest of the graph. Now we are ready to describe the actual construction.

We arbitrarily order the edges in matching, say as follows:

Mu = {(u0, u
′
0), (u1, u

′
1), ..., (un

2
−1, u

′
n

2
−1)} of Gu,

and

Mv = {(v0, v
′
0), (v1, v

′
1), ..., (vn

2
−1, v

′
n

2
−1)} of Gv.

We will follow this ordering in every step of reduction wherever required. Note that all vertices of Gx in Ĝx are
still degree 3 vertices, where x ∈ {u, v}. We insert a copy of gadget J̃i between edges (ui, u

′
i), (ui+1, u

′
i+1) ∈

Mu and (vi, v
′
i), (vi+1, v

′
i+1) ∈ Mv to increase the degree of the vertices u′

i, ui+1, v
′
i and vi+1. We do this by

adding edges (u′
i,mi), (ui+1, n

′
i), (v

′
i, ni) and (vi+1,m

′
i). for 0 ≤ i ≤ n

2
−1, where the index computed modulo

n
2
. We refer to the graph constructed above as G̃. It is easy to see that G̃ thus obtained is a 4-regular graph.

bc
bc

bc bc
bc
bcb b

b b

b

b

b

b b

u′
i

v′i

mi pi p′i m′
i

ni qi q′i n′
i

b b

b b

b

b

b

b b

ui+1

vi+1

y

(a) (b)

b

b

b

b

b

b

b

bui+1

vi+1 u′
i

v′i

mi pi p′i m′
i

ni qi q′i n′
i

Fig. 2. Figure: a) Gadget J̃i. b)Minimum vertices required to cover all the edges of J̃i

In lemma 5, we establish the relation between vertex cover of G̃ and vertex cover of Ĝu ∪ Ĝv.

Lemma 5. The graph Ĝ has a vertex cover of size p if, and only if,G̃ has a vertex cover of size (p + 3n),
where Ĝ = Ĝu ∪ Ĝv.

Proof. In the forward direction, suppose Ĝ has a vertex cover of size p. Since Ĝ ⊂ G̃, only extra edges
in G̃ are those adjacent to vertices of gadgets J̃i for 0 ≤ i < n/2. From V (Ji) if we include vertices
{mi,m

′
i, ni, n

′
ipi, p

′
i}, then they will cover all edges that are adjacent to at least one vertex in V (Ji), for all

0 ≤ i < n/2. This implies that p+ 3n vertices are sufficient to cover all edges of G̃.

In the reverse direction, let S be a vertex cover of size p + 3n for G̃, and let V ′ := V (Ĝ) ∩ S. For each
Ji, 0 ≤ i < n/2, we need 6 vertices to cover edges adjacent to V (Ji). Therefore |V ′| ≤ p. It is easy to see
that V ′ is a vertex cover for Ĝ. ⊓⊔

Again, for ease of describing paths at the end of this discussion, we define τ(J̃i) = (mi, pi, ni, qi, p
′
i,m

′
i, q

′
i, n

′
i)

and τ(J̃i) = (ni,mi, qi, pi, q
′
i, p

′
i, n

′
i,m

′
i) be the two paths that cover all vertices and edges of J̃i. Combining

the two steps of the reduction above, we have the following.

Corollary 1. Let Guv = Gu ∪Gv. The graph Guv admits a vertex cover of size p if, and only if, the graph
G̃ has a vertex cover of size (p+ 5n).
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An useful 2-factor decomposition of G̃. From Corollary 2.1.5(Petersen 1891) in [8], every 2k-regular graph has
a k-factor as a subgraph. Here, we give an explicit partition of G̃ into two 2-factors, namely H,H ′. Initially,
let H,H ′ be empty (no vertices). We have fixed a matching Mu = {(u0, u

′
0), (u1, u

′
1), ..., (un

2
−1, u

′
n

2
−1

)} of Gu

and Mv = {(v0, v
′
0), (v1, v

′
1), ..., (vn

2
−1, v

′
n

2
−1

)} of Gv corresponding to which G̃ was constructed.

Recall that for the construction of G̃, we have deleted the matching edge (xi, x
′
i) and inserted gadget Jxi

, for
x ∈ {u, v} and 0 ≤ i < n

2
and increased the degree of each vertices u′

j, uj+1 ∈ V (Gu) corresponding to match-
ing edges (uj , u

′
j), (uj+1, u

′
j+1) and v′j , vj+1 ∈ V (Gv) corresponding to matching edge (vj , v

′
j), (vj+1, v

′
j+1) by

connecting it to gadget J̃i for 0 ≤ j < n
2
(index computed modulo n

2
).

We now construct two two-factors which will be convenient for us in the next phase of the reduction. These
two-factors will be highly structured in the following sense. The first cycle in both two-factors will involve
all the vertices of Gu and Gv, respectively, and some vertices from the gadgets. The rest of the graph now
decomposes into a collection of cycles which get distributed in a natural way. we now describe this formally.

The first cycle CH that we include in H contains all vertices of Ĝu and J̃i, 0 ≤ i < n
2
that are in G̃, similarly

the first cycle CH′ we include in H ′ contains all vertices of Ĝv and J̃i, 0 ≤ i < n
2
.

Specifically, the first cycle included in H is u0 → ρ(Ju0
) → u′

0 → τ(J̃0) → u1 → ρ(Ju1
) → u′

1 → τ(J̃1) →
u2 → ... → un

2
−2 → ρ(Jun

2
−2
) → u′

n

2
−2 → τ(J̃n

2
−2) → un

2
−1 → ρ(Jun

2
−1
) → u′

n

2
−1 → τ(J̃n

2
−1) → u0.

Similarly, the first cycle CH′ included in H ′ is v0 → ρ(Jv0) → v′0 → τ ′(J̃0) → v1 → ρ(Jv1) → v′1 → τ ′(J̃1) →
v2 → ... → vn

2
−2 → ρ(Jvn

2
−2
) → v′n

2
−2 → τ ′(J̃n

2
−2) → vn

2
−1 → ρ(Jvn

2
−1
) → v′n

2
−1 → τ ′(J̃n

2
−1) → v0.

For H to be one of the factors we require cycles in H containing vertices of Ĝv present in G̃, so we include
the cycles ρ′(Jvi), for 0 ≤ i < n

2
and refer to these set of cycles as CJ . Since we have already used two degrees

of vertices of Gv we are left with degree two from each vertex which forms disjoint union of cycles, so we
let Cv denote the set of cycles that is left in the graph Ĝv. Similarly we include in H ′ the cycles ρ′(Jui

),
for 0 ≤ i < n

2
and refer to them by C′

J and include the graph Ĝu after deleting already included edge in
corresponding cycle and refer to cycles obtained after deletion by Cu.

Let CH ,CH′ be set of cycles in H and H ′ respectively. We will choose VH ⊆ V (G̃) such that ∀C ∈ CJ ∪ Cv,
|V (C) ∩ VH | = 1 and ∀C′ ∈ C′

J ∪ Cu, |V (C′) ∩ VH | = 1. We will delete vertices in VH and insert some other
set of vertices, the aim is to break all cycles at some vertices and stitch together the broken cycles in H to
form one of the hamiltonin path and similarly form the other hamiltonian path using the cycles in H ′.

Initially let VH = ∅. Let V1 = {bxi
∈ V (Jxi

) |x ∈ {u, v} and 0 ≤ i < n
2
} and V2 = ∅. Observe that the

cycles in Cu and Cv are disjoint among them (no common vertex), so we select one vertex from each cycle
C ∈ (Cu ∪ Cv) and include it in V2 and VH = V1 ∪ V2. Note that the vertex selected from cycles in Cu and CJ
are present in the cycle CH′ , similarly vertex selected from cycles in Cv and C′

J are present in the cycle CH .

From Constructed 4-regular graph with 2-factoring H,H ′ to a braid graph. We order the cycles in H and
H ′ and call the ordered sequence of cycles as SH , SH′ . The first cycle in SH is CH , next we arbitrary order
the cycles in CJ from C2, C3, ..., Cp′ and include in SH , and then we arbitrarily order the cycles in Cv from
Cp′+1, Cp′+2, ..., Ck and include in SH .

It is easy to see that once we have fixed the ordering of cycles in H we already have the corresponding
ordering of cycles in H ′ which is given by the function f indicating the graph isomorphism from Gu to Gv.
Also we order the vertices in VH corresponding to the ordering of cycles of H . First, we give the gadgets
that we will use for breaking cycles that ensures the hamiltonian property and relates the vertex cover of G̃
to the vertex cover of new graph constructed.

Gadgets used for reduction The third gadget Wi that we use for the reduction is shown in figure 3[b] (indexed
by i). It is easy to see that it has exactly 2 paths from v′i to v′′i [refer figure 4(a), 4(b)], where each path
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Fig. 3. (a) Cycle Ci ∈ CHG
, C′

j ∈ CH′

G
and Ci, C

′

j containing v ∈ V where HG,H
′

G is a 2-factoring of G. (b) Gadget

W , where v is split into v′, v′′ and v′ connected to x, x′ and v′′ connected to y, y′.One neighbour of v in HG, H
′

G is
connected to a and other neighbour to b and double lines showing path in cycle Ci, C

′

j

.

covers all vertices of Wi and all the path created by deletion of vertex from one of the cycles. Note other
than the edges covered in this two paths we do not have any other edge in Wi.

We create a new graph GF as follows. Initially we have GF = G̃. As G̃ is a 4-regular graph therefore
vi ∈ VH ⊆ V (G̃) has four neighbors say vi1 , vi2 , vi3 and vi4 and let vi1 , vi2 be neighbor of vi in cycle Ci ∈ CH

and vi3 , vi4 be neighbors of vi in cycle C′
j ∈ CH′ . We delete vi from the graph GF and insert Wi and add

edges (vi1 , ai), (vi3 , ai), (vi2 , bi) and (vi4 , bi). Since in G̃ if at least one of vi1 , vi2 , vi3 , vi4 is not chosen in vertex
cover then we have to include vi in the vertex cover. So by Wi we ensure that if at least one of vi1 , vi2 , vi3vi4
is not chosen in the vertex cover then the size of vertex cover increases exactly by one indicating in vertex
cover for G̃ we need to include vertex vi [refer lemma 6].

Lemma 6. We can cover all edges of Wi with V ′ ⊆ V (Wi) s.t. ai, bi /∈ V ′ and |V ′| = 9 and if at least one
of ai, bi is in V ′ then we can cover all edges with a V ′ s.t. |V ′| = 10 and this is minimum required.

Proof. The vertex sets {v′i, xi, x
′
i}, {v′′i , yi, y

′
i}, {wi1 , wi2 , wi3}, {wi4 , wi5 , wi6} form triangles and (wi, ai)

is an edge, therefore we require minimum of 9 vertices to cover edges of Wi. If we have V ′ =
{xi, x

′
i, yi, y

′
i, wi1 , wi2 , wi4 , wi6 , wi} then we can cover all edges of Wi with 9 vertices.

If at least one of ai or bi is forced due to one of vi1 , vi3 or vi2 , vi4 not chosen respectively, say ai is forced then
apart from the K3’s present we have an edge (wi, bi), so including ai we need at least 10 vertices, similar argu-
ment can be given when bi is forced (edge (wi, ai) left). If we have V

′ = {xi, x
′
i, yi, y

′
i, wi1 , wi2 , wi4 , wi6 , ai, bi}

then we can cover all edges of Wi with 10 vertices. ⊓⊔

In Figure 5 we show fourth gadget W̃i used for reduction and in Figure 6 we show that there are no extra
edges other that two paths covering all vertices of W̃i from ṽ′ and ṽ′′. The need of this gadget is when we
have a cycle in which more than one vertex is deleted, and we do not have a path for at least one neighbor
of deleted vertex to attach to gadget Wi, refer Figure 5[a].

In Lemma 7 we prove the minimum number of vertices required to cover edges of W̃i and in Lemma 8 we
prove that if at least one neighbor of deleted vertex say vi for which W̃i is inserted is not chosen in vertex
cover then we require 10 vertices to cover the edges and if all neighbors are included then we require 9
vertices only.

Lemma 7. To cover edges of gadget W̃i, 9 vertices are necessary and sufficient.

8



bb

b b
b

vi2
bivi4

b
ai

vi1 vi3

b

b

v
′′

i

yib

y′i

v′i
b

b

xi

x′i

b

b

wi1

wi

wi2

wi4 wi5

wi3

wi6

(a)

bb

b b
b

vi2
bivi4

b
ai

vi1 vi3

b

b

v
′′

i

yib

y′i

v′i
b

b

xi

x′i

b

b

wi1

wi

wi2

wi4

wi3

wi5

wi6

(b)

Fig. 4. Edge Set of gadget W is union of two paths and (a),(b) showing two paths from v′ to v′′ covering all vertices
and edges of Wi.
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Proof. Consider gadget W̃i [figure 5]. {w̃i1 , w̃i2 , w̃i3}, {w̃i4 , w̃i5 , w̃i6}, forms K3 and {(ṽ′i, x̃i), (ṽ
′′

i , ỹi), (c̃i,
b̃′i), (b̃i, w̃i7), (ãi, ã

′
i)} are edges (all vertex disjoint), so we require at least 9 vertices to cover all edges of W̃i.

If V ′ = {w̃i1 , w̃i2 , w̃i4 , w̃i6 , w̃i7 , x̃i, ỹi, ã
′
i, b̃

′
i} then V ′can cover all edges of W̃i with |V ′| = 9 ⊓⊔
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ỹ

ỹ′

Fig. 7. Connection of gadget W and W̃ in one cycle when a cycle is broken at two points, where H,H ′ is 2-factoring
of given 4-regular graph

b
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b

b
b

ti1

ti2
ti4
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ti6

Fig. 8. Gadget WCi
, double circled vertex forming a minimum vertex cover and empty circle showing outside vertex

to which WCi
is connected and dotted lines connection to them

Lemma 8. Consider a vertex vi ∈ VH and vi ∈ V (C̃), C̃ ∈ CH ∪CH′ . Let neighbors of vi be vi1 , vi2 , vi3 , vi4 .
Here vi is deleted and W̃i is inserted as shown in figure 5. If at least one of vi1 , vi2 , vi3 , vi4 is not included in
vertex cover then minimum number of vertex required to cover E′ = E(W̃i)∪{(vi1 , ṽ

′
i), (ṽ

′′
i , vi2), (vi3 , ãi), (vi4 ,

b̃i)} apart from v1, v2, v3, v4 is 10.

Proof. We know that {w̃i1 , w̃i2 , w̃i3}, {w̃i4 , w̃i5 , w̃i6} form triangles, so we require at least 4 vertices among
them.

Suppose vi1 is not chosen in the vertex cover so ṽ′i is forced, but then we have {(x̃i, ãi),
(ã′i, c̃i), (w̃i, b̃

′
i), (b̃i, w̃i7 ), (ỹi, ṽ

′′
i )} as vertex disjoint edges left to be covered. Suppose vi2 is not cho-

sen in the vertex cover so ṽ′′i is forced, but then we have {(x̃i, ṽ
′
i), (ã

′
i, c̃i), (w̃i, b̃

′
i), (ãi, w̃i7), (ỹi, b̃i)}

as vertex disjoint edges left to be covered. Similarly if ãi forced due to vi3 not chosen in ver-
tex cover we have edges left as {(x̃i, ṽ

′
i), (ã

′
i, w̃i), (c̃i, b̃

′
i), (b̃i, w̃i7 ), (ỹi, ṽ

′′
i )} and for b̃i forced we have

{(x̃i, ṽ
′
i), (ã

′
i, w̃i), (c̃i, b̃

′
i), (ãi, w̃i7), (ỹi, ṽ

′′
i )} If we have V ′ = {ṽ′i, ṽ

′′
i , ãi, b̃i, w̃i, c̃i, w̃i1 , w̃i2 , w̃i4 , w̃i6}, then we

can cover all edges in E′ with 10 vertices when at least one of vi1 , vi2 , vi3 , vi3 is not chosen in the vertex
cover. ⊓⊔
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The Overall Connection. The fifth (and final) gadget used is denoted by WCi
, and is shown in figure 8.

We use this gadget for connecting broken cycles. It is easy to see that the gadget itself is an union of two
hamiltonian paths, and that we need four vertices to cover all the edges. We have fixed the ordering of cycles
SH , SH′ , and we use this for the overall connection.

For cycle Ci ∈ SH let the vertex from which the specified path (path hamiltonian with respect to Ci and
inserted gadget to break cycle) starts be si and where it ends be ei, similarly for cycles C′

i ∈ SH′ let the
start vertex be s′i and end vertex be e′i. For a cycle Ci, Ci+1 ∈ SH and C′

i, C
′
i+1 ∈ SH′ we insert the gadget

WCi
and add edges (ei, ti1), (si+1, ti2), (e

′
i, ti1), (s

′
i+, ti2), for 1 ≤ i < k, where k is the number of cycles in

H . It is easy to see that after making these additions, the graph has edges which is exactly union of two
hamiltonian paths. One of the hamiltonian path starting from s1 and ending at ek and second hamiltonian
path starting at s′1 and ending at e′k.

Putting together all the constructions described above and using the translations of the vertex cover at every
stage, we have the following result.

Theorem 1. The problem of finding a vertex cover of size at most k in a braid graph is NP-complete.

b b b
b b b

b b b b b b b b b b b b

cycles in CJ Cycles in Cv

b b
b b b

b b b

b b b b b b b b b b

Cycles in Cu

b

b

b

b

b b

b b b bb b b b b b b b b b bb b b

0 ≤ j ≤ ⌊n
2
⌋

cycles in C′

J

0 ≤ j ≤ ⌊n
2
⌋

H

H ′

Fig. 9. Overall Connection, With thick-light lines showing the path in the cycle, rectangles representing copies gadget
of Wc and thin-dark line representing connection of various cycles to copy of gadget Wc.

5 An Improved Branching Algorithm

In this section we describe an improved FPT algorithm for the vertex cover problem on graphs with maximum
degree at most four. The algorithm is essentially a search tree, and the analysis is based on the branch-and-
bound technique. We use standard notation with regards to branching vectors as described in [11].The input
to the algorithm is denoted by a pair (G, k), where G is a graph, and the question is whether G admits a
vertex cover of size at most k.

We work with k, the size of the vertex cover sought, as the measure — sometimes referred to as the budget.
When we say that we branch on a vertex v, we mean that we recursively generate two instances, one where
v belongs to the vertex cover, the other where v does not belong to the vertex cover. This is a standard
method of exhaustive branching, where the measure drops, respectively, by one and d(v) in the two branches
(since the neighbors of v are forced to be in the vertex cover when v does not belong to the vertex cover).

Preprocessing. We begin by eliminating simplicial vertices, that is, vertices whose neighborhoods form a
clique. If the graph induced by N [v] is a clique, then it is easy to see that there is a minimum vertex cover
containing N(v) and not containing v (by a standard shifting argument). We therefore preprocess the graph
in such a situation by deleting N [v] and reducing the budget to k − |N(v)|.

Our algorithm makes extensive use of the folding technique, as described in past work [2, 3]. This allows
us to preprocess vertices of degree two in polynomial time, while also reducing the size of the vertex cover
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sought by one. We briefly describe how we might handle degree-2 vertices in polynomial time. Suppose v is
a degree-2 vertex in the graph G with two neighbors u and w such that u and w are not adjacent to each
other. We construct a new graph G′ as follows: remove the vertices v, u, and w and introduce a new vertex
v⋆ that is adjacent to all neighbors of the vertices u and w in G (other than v). We say that the graph G′ is
obtained from the graph G by “folding” the vertex v, and we say that v⋆ is the vertex generated by folding
v, or simply that v⋆ is the folded vertex (when the context is clear). It turns out that the folding operation
preserves equivalence, as shown below.

Proposition 1. [2, Lemma 2.3] Let G be a graph obtained by folding a degree-2 vertex v in a graph G, where
the two neighbors of v are not adjacent to each other. Then the graph G has a vertex cover of size bounded
by k if and only if the graph G′ has a vertex cover of size bounded by (k − 1).

Note that the new vertex generated by the folding operation can have more than four neighbors, especially
if the vertices adjacent to the degree two vertex have, for example, degree four to begin with. The branching
algorithm that we will propose assumes that we will always find a vertex whose degree is bounded by 3 to
branch on, therefore it is important to avoid the situation where the graph obtained after folding all available
degree two vertices is completely devoid of vertices of degree bounded by three (which is conceivable if all
degree three vertices are adjacent to degree two vertices that in turn get affected by the folding operation).
Therefore, we apply the folding operation somewhat tactfully− we apply it only when we are sure that the
folded vertex has degree at most four. We call such a vertex a foldable vertex. Further, a vertex is said to be
easily foldable if, after folding, it has degree at most 3. We avert the danger of leading ourselves to a four-
regular graph recursively by explicitly ensuring that vertices of degree at most three are created whenever
a folded vertex has degree four. Note that in the preprocessing step we will be folding only easily foldable
vertices.

Typically, we ensure a reasonable drop on all branches by creating the following win-win situation: if a vertex
is foldable, then we fold it, if it is not, then this is the case since there are sufficiently many neighbors in the
second neighborhood of the vertex, and in many situations, this would lead to a good branching vector. Also,
during the course of the branching, we appeal to a couple of simple facts about the structure of a vertex
cover, which we state below.

Lemma 9. [2, First part of Lemma 3.2] Let v be a vertex of degree 3 in a graph G. Then there is a minimum
vertex cover of G that contains either all three neighbors of v or at most one neighbor of v.

This follows from the fact that a vertex cover that contains v (where d(v) = 3) and two of its neighbors can
be easily transformed into one, of the same size, that omits v and contains all of its neighbors.

Proposition 2. If x, a, y, b form a cycle of length four in G (in that order), and the degree of a and b in G
is two, then there exists an optimal vertex cover that does not pick a or b and contains both x and y.

Proof. Let S be an optimal vertex cover. Any vertex cover must pick at least two vertices among x, y, a, b.
If x and y belong to S, then clearly S does not contain a and b (otherwise S \ {a, b} would continue to be a
vertex cover, contradicting optimality). If S does not contain x (or y, or both), then S must contain both a
and b. Note that (S \ {a, b}) ∪ {x, y} is a vertex cover whose size is at most |S|, and is a vertex cover of the
desired size. ⊓⊔

Overall Algorithm. To begin with, the branching algorithm tries to branch mainly on a vertex of degree
three or two. If the input graph is four-regular, then we simply branch on an arbitrary vertex to create two
instances both of which have at least one vertex of degree at most three. We note that this is an off-branching
step, in the future, the algorithm maintains the invariant that at each step, the smaller graph produced has
at least one vertex whose degree is at most three.
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After this, we remove all the simplicial vertices and then fold all easily-foldable vertices. If a degree two
vertex v with neighbors u and w is not easily-foldable, then note that there exists an optimal vertex cover
that either contains v or does not contain v and includes both its neighbors. Indeed, if an optimal vertex
cover S contains, say v and u, then note that (S \ {v})∪{w} is a vertex cover of the same size. So we branch
on the vertex v:

– when v does not belong to the vertex cover, we pick u,w in the vertex cover, leading to a drop of two in
the measure,

– when v does belong to the vertex cover, we have that N(u)∪N(w) must belong to the vertex cover, and
we know that |N(u) ∪N(w) \ {v}| ≥ 4 (otherwise, v would be easily-foldable), and this leads to a drop
of five in the measure.

So we either preprocess degree two vertices in polynomial time, or branch on them with a branching vector
of (2, 5). At the leaves of this branching tree, if we have a sub-cubic graph, then we employ the algorithm
of [14]. Otherwise, we have at least one degree three vertex which is adjacent to at least one degree four
vertex. We branch on these vertices next. The case analysis is based on the neighborhood of the vertex —
broadly, we distinguish between when the neighborhood has at least one edge, and when it has no edges.
The latter case is the most demanding in terms of a case analysis. For the rest of this section, we describe
all the scenarios that arise in this context.

Degree three vertices with edges in their neighborhood. For this part of the algorithm, we can always assume
that we are given a degree three vertex with a degree four neighbor. Let v be a degree three vertex, and
let N(v) := {u,w, x}, where we let u denote a degree four vertex. Note that u,w, x does not form a triangle,
otherwise v would be a simplicial vertex and we would have handled it earlier. So, we deal with the case
when N(v) is not a triangle, but has at least one edge. If (w, x) is an edge, then we branch on u:

– when u does not belong to the vertex cover, we pick four of its neighbors in the vertex cover, leading to
a drop of four in the measure,

– when u does belong to the vertex cover, we delete u from the graph, and we are left with v, w, x being a
triangle where v is a degree two vertex, and therefore we may pick w, x in the vertex cover — together,
this leads to a drop of three in the measure.

On the other hand, if w, x is not an edge, then there is an edge incident to u. Suppose the edge is u,w
(the case when the edge is u, x is symmetric). In this case, we branch on x exactly as above. The measure
may drop by three when x does not belong to the vertex cover, if x happens to be a degree three vertex.
Therefore, our worst-case branching vector in the situation when N(v) is not a triangle, but has at least one
edge is (3, 3).

Degree three vertices whose neighborhoods are independent. Here we consider several cases. Broadly, we have
two situations based on whether u,w, x have any common neighbors or not.

First, suppose there exists a vertex t that is adjacent to at least two vertices in N(v). Here, let us begin by
considering the situation when t is adjacent to u and one other vertex. We will call this Scenario A.

In this scenario, we distinguish two cases based on the degree of t, and whether t is adjacent to a degree four
vertex or not. Here after for ease in specification we will refer to a degree 1 vertex also as a foldable vertex.

Case 1: The vertex t has degree four. Here, we branch on u as follows. We let (t, w) to be an edge in the
graph.

(a) If u belongs to the vertex cover, then we delete u from G. Then, if v is foldable in the resulting graph,
then we fold v. Otherwise, we branch further on v:
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Fig. 10. Scenario A, Case 1: The situation (left) and the suggested branching (right).

i. when v does not belong to the vertex cover, we pick u,w in the vertex cover, leading to a drop
of two in the measure. Here, we delete v, u and w, after which t becomes a degree two vertex.
Let t′, t′′ denote the two neighbors of t. Then, if t is foldable in the resulting graph, then we fold
v. Otherwise, we branch on t:
A. when t does not belong to the vertex cover, we pick t′, t′′ in the vertex cover, leading to a

drop of two in the measure.
B. when t does belong to the vertex cover, we have that N(t′)∪N(t′′) must belong to the vertex

cover, and this leads to a drop of six in the measure.
ii. when v does belong to the vertex cover, we have that N(u) ∪ N(w) must belong to the vertex

cover, and we know that |N(u)∪N(w)\{v}| ≥ 5 (otherwise, v would be foldable), and this leads
to a drop of six in the measure.

(b) If u does not belong to the vertex cover, then we pick all of its neighbors in the vertex cover. Since
the degree of u is four, this leads the measure to drop by four. Also, after removing N [u] from G,
the vertex w lose two neighbors (namely v and t). If it is foldable, then we proceed by folding the
said vertex. Otherwise, we branch further on w, letting w′, w′′ denote the neighbors of w.
i. when w does not belong to the vertex cover, we pick w′, w′′ in the vertex cover, leading to a drop

of two in the measure,
ii. when w does belong to the vertex cover, we have that N(w′) ∪N(w′′) and this leads to a drop

of six in the measure.

Depending on the situations that arise, the branching vectors can be one of the following (we use S to
denote the vertex cover that will be output by the algorithm):

– w is foldable in G \N [u], and v is foldable in G \ {u}. (2, 5)
– w is foldable in G \N [u], v is not foldable in G \ {u}, and t is foldable in G \ {u} \N [v]. (7, 4, 5)
– w is foldable in G \N [u], v is not foldable in G \ {u}, and t not foldable in G \ {u} \N [v]. (7, 9, 5, 5)
– w is not foldable in G \N [u], and v is foldable in G \ {u}. (2, 10, 6)
– w is not foldable in G\N [u], v is not foldable in G\{u}, and t is foldable in G\{u}\N [v]. (7, 4, 10, 6)
– w is not foldable in G \ N [u], v is not foldable in G \ {u}, and t is not foldable in G \ {u} \ N [v].

(7, 9, 5, 10, 6)

The reason we needed to have d(t) = 4 in the case above was to ensure that we have a vertex that we can
either fold or branch on in the graph G\{u}\N(v), which is the situation that arises when v is not foldable,
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and N(v) is included in the vertex cover. If w and x both have degree three, then v is indeed foldable and
the branching above gives the desired guarantee. Otherwise, if t has degree three and in particular (t, x) is
an edge, then t becomes isolated in this situation, and we have no clear way of further progress.

Before embarking on the case analysis, we describe a branching strategy for some specific situations — these
mostly involve two non-adjacent vertices that have more than two neighbhors in common, with at least one
of them of degree 4. This will be useful in scenarios that arise later.

p q

a

b

c

x y

Fig. 11. The cases involving at least two or three common neighbors.

We consider the case when a degree four vertex p non-adjacent to a vertex q has at least three neighbhors
in commmon, say a, b, c and let x be the other neighbhor of p that may or may not be adjacent to q. Notice
that there always exists an optimal vertex cover that either contains both p and q or omits both p and q.
To see this, consider an optimal vertex cover S that contains p and omits q. Then, S clearly contains a, b, c.
Notice now that T := (S \ {p})∪ {x} is also a vertex cover, and T contains neither p or q, and has the same
size as S. This suggests the following branching strategy:

1. If p and q both belong to the vertex cover, then the measure clearly drops by two. We proceed by
deleting p and q from G. Now note that the degree of the vertices {a, b, c} reduces by two, and they
become vertices of degree one or two (note that they cannot be isolated because we always begin by
eliminating vertices of degree two by preprocessing or branching). If any one of these vertices is simplicial
or foldable then we process it or fold it respectively. Otherwise, we branch on a:
(a) when a does not belong to the vertex cover, we pick its neighbhors in the vertex cover, leading to a

drop of two in the measure.
(b) when a does belong to the vertex cover, we have that its second neighborhood must belong to the

vertex cover, and this leads to a drop of six in the measure.
2. If p and q are both omitted from the vertex cover, then we pick a, b, c, x in the vertex cover and the

measure drops by four.

Note that if a is foldable in G \ {p, q}, then we have the branch vector (3, 4), otherwise, we have the branch
vector (4, 8, 4). We refer to the branching strategies outlined above as the CommonNeighborBranch
strategy.

We now continue our case analysis. Recall that we would like to address the situation that t is degree three
and all of its neighbors are common with v, and further that at least one of w or x have degree four. Let us
say, without loss of generality, that w has degree four.

Case 2: The vertex t has degree three, the vertices u,w have degree four, and (t, x) ∈ E.
Here, we let u′ and u′′ denote the neighbors of u. Our case analysis is now based on the degrees of these
vertices.

I At least one of u′ or u′′ has degree three. Suppose, without loss of generality, that u′ has degree
three. Note that x and u are two non-adjacent degree four vertices. The vertices v and t are already
in their common neighborhood. If they have more common neighbors, then we branch according to
the CommonNeighborBranch strategy. Otherwise, we branch on the vertex w as follows.
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(a) If w belongs to the vertex cover, then we delete w from G. Here, the measure drops by one. In
the remaining graph, branch on u:
i. When u does not belong to the vertex cover, we pick the neighbors of u in the vertex cover.

Since u is not in the vertex cover, and w is in the vertex cover, we know by Lemma 9 that
the neighbors of w and x must be in the vertex cover. Note that u and x have no common
neighbhors other than v and t, otherwise the CommonNeighborBranch strategy would
apply. Therefore, we have that the measure drops by at least six more (the vertex u has at
least four neighbors and x has at least two private neighbors).

ii. When u does belong to the vertex cover, then we also pick x in the vertex cover (note that
to cover the edge (v, x), we may pick x without loss of generality if both u and w are in the
vertex cover). Further, we fold u′ if it is foldable, otherwise we branch on u′:

A. When u′ does not belong to the vertex cover, we pick its neighbhors in the vertex cover,
leading to a drop of two in the measure.

B. When u′ does belong to the vertex cover, we have that its second neighborhood must
belong to the vertex cover, and this leads to a drop of six in the measure.

(b) If w does not belong to the vertex cover, then we pick all of its neighbors in the vertex cover. This
immediately leads the measure to drop by four. Also, after removing N [w] from G, the vertex u
loses two neighbors (namely v and t). If u is foldable we fold u, otherwise we branch on u:
i. When u does not belong to the vertex cover, we pick u′, u′′ in the vertex cover, leading to a

drop of two in the measure,
ii. When u does belong to the vertex cover, we have that N(u′) ∪ N(u′′) and this leads to a

drop of six in the measure.
Depending on the situations that arise, the branching vectors can be one of the following (we use S
to denote the vertex cover that will be output by the algorithm):
– u is foldable in G \N [w], and u′ is foldable in G \ {u,w}. (4, 7, 5)
– u is foldable in G \N [w], and u′ is not foldable in G \ {u,w}. (9, 5, 7, 5)
– u is not foldable in G \N [w], and u′ is foldable in G \ {u,w}. (4, 7, 10, 6)
– u is not foldable in G \N [w], and u′ is not foldable in G \ {u,w}. (9, 5, 7, 10, 6)
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Fig. 12. Scenario A, Case 2.I: The situation (left) and the suggested branching (right).

16



II Both u′ or u′′ have degree four. Here, we branch on u′, as described below.
(a) If u′ belongs to the vertex cover, then we delete u′ from G. Here, the measure drops by one. In

the remaining graph, branch on u:
i. When u does not belong to the vertex cover, we pick the neighbors of u in the vertex cover.

Also, after removing N [u] from G, the vertices w and x loose two neighbors each (namely v
and t). If either of them are foldable, then we proceed by folding. Notice that none of them
become isolated because degree two vertices are eliminated. Otherwise, we branch on w:

A. When w does not belong to the vertex cover, we pick its neighbhors in the vertex cover,
leading to a drop of two in the measure.

B. When w does belong to the vertex cover, we have that its second neighborhood must belong
to the vertex cover, and this leads to a drop of six in the measure.

ii. When u does belong to the vertex cover, remove u from G. In the remaining graph, the
vertices v and t loses one neighbor each (namely u), and are now vertices of degree two. Note
that v, w, t, x now form a C4, and since v and t have degree two, we may pick w and x in the
vertex cover without loss of generality (see Proposition 2).

(b) If u′ does not belong to the vertex cover, then we pick all of its neighbors in the vertex cover.
This immediately leads the measure to drop by four. Also, after removing N [u′] from G, the
vertices v and t loses one neighbor each (namely u), and are now vertices of degree two. Note
that v, w, t, x now form a C4, and since v and t have degree two, we may pick w and x in the
vertex cover without loss of generality (see Proposition 2).

If one of w or x is foldable in G \ {u′} \N [v], then we have a branching vector of (4, 5, 6). Otherwise,
we have a branching vector of (4, 10, 6, 6).
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Fig. 13. Scenario A, Case 2.II: The situation (left) and the suggested branching (right).

This completes the description of Scenario A, where we assumed that t was adjacent to u. Now, let us turn
to the situation when t is not adjacent to u. Since we are in the setting where t is adjacent to two neighbors
of v, this implies that w and x are both neighbors of t. In fact, we can even assume that both w and x are
vertices of degree three, otherwise we would be in Scenario A by a simple renaming of vertices. We call
this setup Scenario B.

Here, we simply branch on the vertex u, as follows:
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1. If u belongs to the vertex cover, then we delete u from G. In the resulting graph, v is evidently a foldable
degree two vertex, so we fold v. Notice that the measure altogether drops by two in this branch.

2. If u does not belong to the vertex cover, then we pick all its neighbors in the vertex cover. After removing
N [u], note that w and x have degree two. If either of them are foldable, then we proceed by folding.
Otherwise, we branch on w:
(a) When w does not belong to the vertex cover, we pick its neighbhors in the vertex cover, leading to

a drop of two in the measure.
(b) When w does belong to the vertex cover, we have that its second neighborhood must belong to the

vertex cover, and this leads to a drop of six in the measure.

Note that if w is foldable in G \ N [u], then we have a branch vector of (2, 5), otherwise, we have a branch
vector of (2, 6, 10). Now we have covered all the cases that arise when the neighbors of v have a shared
neighbor other than v, which we called t.
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Fig. 14. Scenario B: The situation (left) and the suggested branching (right).

The remaining case is when the vertices u,w, x have no common neighbors other than v. We call this
Scenario C . Here, we have cases depending on the degree of w and x — the first setting is when both w, x
are vertex of degree three. Second when both have degree four and third when one has degree three and
other has degree four.

Case 1: When the degree of both w and x is three. This branching is identical to the branching for
Sceneario B. Note that the important aspect there was the fact that v is foldable in G \ {u}, which
continues to be the case here. It is easy to check that all other elements are identical.

Case 2: When the degree of both w and x is four. In this case, we branch on w.
(a) If w belongs to the vertex cover, then we delete w from G. Here, the measure drops by one. In the

remaining graph, branch on v:
i. When v does not belong to the vertex cover, we pick the neighbors of v in the vertex cover and

the measure drops by three.
ii. When v does belong to the vertex cover and we are in case when w is in vertex cover, we know

by Lemma 9 that the neighbors of u and x must be in the vertex cover. Note that u,w and x
have no common neighbors other than v (or we would be in Scenario A or Scenario B). But,
both u and x are degree four vertex with no vertex common in their neighborhood other than v,
so we include in vertex cover neighbhors of u and x and delete from graph N [u] ∪ N [x] ∪ {w},
with a total drop in the measure by 8.

(b) If w does not belong to the vertex cover, then we pick all of its neighbors in the vertex cover and we
branch on x.
i. When x does not belong to the vertex cover, we include all neighbhors of x in the vertex cover

to get a total drop of 7.
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ii. When x does belong to the vertex cover, and we have that w is not in the vertex cover, we know
by Lemma 9 that neighbors of u and w must be in vertex cover. So we include neighbors of u
and x in the vertex cover, to get a total drop of 8.

Here we have the branch vector as (3, 8, 7, 8).

Case 3: When the degree of w is four and x is three. We let the two other neighbors of x to be x1, x2. If x1

is a degree 4 vertex and x2 is a degree 3 vertex (or vice-versa) then we have a degree 3 vertex x adjacent
to two degree 3 vertex v, x2 and a degree 4 vertex x1 and we can apply the rules in Scenario C: case
1. So we are left with two cases one when both x1, x2 are degree 3 vertex and second when both x1, x2

are degree 4 vertex.

(a) Both x1, x2 are degree three vertex. In this case we branch on u.

i. When u does belong to the vertex cover then we branch on v.
A. When v does not belong to the vertex cover then we include neighbhors of v in the vertex

cover, to get a drop in the measure by 3.
B. When v does belong to the vertex cover and we know u is in vertex cover, we know by

Lemma 9 that neighbors of w, x are in vertex cover. So we include neighbors of w, x in vertex
cover and get a drop in measure by 7.

ii. When u does not belong to the vertex cover. Then we include neighbors of u in the vertex cover
and delete N [u] from the graph. Now x is a degree 2 vertex and |N(x1) ∪ N(x2) \ {v}| ≤ 4, so
we fold x to get a drop of one more in the measure.
Here we have the branch vector as (3, 7, 5).

(b) Both x1, x2 are degree four vertex. We branch on x1.

i. When x1 does not belong to the vertex cover, we get an immediate drop of four in the measure.
We delete N [x1] from the graph, after deletion v is a degree 2 vertex. If v is foldable we fold v
and get a drop of 1, otherwise we branch on v.
A. When v does belong to the vertex cover then we include neighborhood of u and w in the

vertex cover and get a total drop in the measure of atleast 10.
B. When v does not belong in the vertex cover then we include neighbhors of v in the vertex

cover and get a total drop of 6.
ii. When x1 does belong to the vertex cover, we branch on x.

A. When x does belong to the vertex cover, we know by Lemma 9 that neighbhors of v and x2

are in vertex cover. So we inlcude neighbhors of v and x2 in the vertex cover and get a total
drop of 7 in the measure.

B. When x does not belong to the vertex cover, we get an immediate drop in measure by 3, now
we branch on u.
– When u does belong to the vertex cover and we are in the case when x not belong to the

vertex cover, we know by Lemma 9 that neighbhors of w, x must be in vertex cover. So we
include neighbors of w, x in the vertex cover and get a total drop in the measure by 7

– When u does not belong to the vertex cover then we include neighbhors of u in the vertex
cover and get a total drop of 6 in the measure.

If v is foldable in G \ N [x1] we have the branch vector (5, 7, 7, 6), otherwise the branch vector is
(10, 6, 7, 7, 6).

Note that the correctness of the algorithm is implicit in the description, and follows from the fact that the
cases are exhaustive and so is the branching. The branch vectors are summarized in Figure 15. We have,
consequently, the following theorem.

Theorem 2. The Vertex Cover problem on graphs that have maximum degree at most four can be solved
in O(1.2637k · nm) worst-case running time.
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Scenario Cases Branch Vector c

Scenario A.

Case 1

(2, 5) 1.2365
(7, 4, 5) 1.2365
(7, 9, 5, 5) 1.2498
(2, 10, 6) 1.2530
(7, 4, 10, 6) 1.2475
(7, 9, 5, 10, 6) 1.2575

Case 2 (I)

(4, 7, 5) 1.2365
(9, 5, 7, 5) 1.2498
(4, 7, 10, 6) 1.2475
(9, 5, 7, 10, 6) 1.2575

Case 2 (II)
(4, 5, 6) 1.2498
(4, 10, 6, 6) 1.2590

Scenario B.
(2, 5) 1.2365
(2, 6, 10) 1.2530

Scenario Cases Branch Vector c

Degree Two (2, 6) 1.2365
Edge in N(v) (3, 3) 1.2599

CNB
(2, 5) 1.2365
(3, 4) 1.2207
(4, 8, 4) 1.2465

Scenario C.

Case 1 (2, 10, 6) 1.2530
Case 2 (8, 3, 8, 7) 1.2631

Case 3
(3, 7, 5) 1.2637
(5, 7, 7, 6) 1.2519
(10, 6, 7, 7, 6) 1.2592

Fig. 15. The branch vectors and the corresponding running times across various scenarios and cases.

6 Conclusions

In this work we showed that the problem of hitting all axis-parallel slabs induced by a point set P is equivalent
to the problem of finding a vertex cover on a graph whose edge set is the union of two Hamiltonian Paths.
We established that this problem is NP-complete. Finally, we also gave an algorithm for Vertex Cover on
graphs of maximum degree four whose running time is O⋆(1.2637k). It would be interesting to know if there
are better algorithms for braid graphs in particular.
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