Skip to main content

A Lin-Kernighan Heuristic for the DCJ Median Problem of Genomes with Unequal Contents

  • Conference paper
Computing and Combinatorics (COCOON 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8591))

Included in the following conference series:

  • 1321 Accesses

Abstract

In this paper, we designed a distance metric as DCJ-Indel-Exemplar distance to estimate the dissimilarity between two genomes with unequal contents (with gene insertions/deletions (Indels) and duplications). Based on the aforementioned distance metric, we proposed the DCJ-Indel-Exemplar median problem, to find a median genome that minimize the DCJ-Indel-Exemplar distance between this genome and the given three genomes. We adapted Lin-Kernighan (LK) heuristic to calculate the median quickly by utilizing the features of adequate sub-graph decomposition and search space reduction technologies. Experimental results on simulated gene order data indicate that our distance estimator can closely estimate the real number of rearrangement events; while compared with the exact solver using equal content genomes, our median solver can get very accurate results as well. More importantly, our median solver can deal with Indels and duplications and generates results very close to the synthetic cumulative number of evolutionary events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: On the approximability of comparing genomes with duplicates. J. Graph Algorithms Appl. 13(1), 19–53 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. Journal of Computational Biology 8, 483–491 (2001)

    Article  Google Scholar 

  3. Bergeron, A., Mixtacki, J., Stoye, J.: On sorting by translocations. Journal of Computational Biology, 615–629 (2005)

    Google Scholar 

  4. Blin, G., Chauve, C., Fertin, G.: The breakpoint distance for signed sequences. In: Proc. CompBioNets 2004. Text in Algorithms, vol. 3, pp. 3–16. King’s College, London (2004)

    Google Scholar 

  5. Bourque, G., Pevzner, P.A.: Genome-Scale Evolution: Reconstructing Gene Orders in the Ancestral Species. Genome Res. 12(1), 26–36 (2002)

    Google Scholar 

  6. Braga, M.D.V., Willing, E., Stoye, J.: Genomic distance with DCJ and indels. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 90–101. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics. Kluwer (2001)

    Google Scholar 

  8. Caprara, A.: The Reversal Median Problem. INFORMS Journal on Computing 15(1), 93–113 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Genomes containing duplicates are hard to compare. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. Part II. LNCS, vol. 3992, pp. 783–790. Springer, Heidelberg (2006)

    Google Scholar 

  10. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Assignment of orthologous genes via genome rearrangement. IEEE/ACM Trans. Comput. Biology Bioinform. 2(4), 302–315 (2005)

    Article  Google Scholar 

  11. Chen, Z., Fu, B., Zhu, B.: Erratum: The approximability of the exemplar breakpoint distance problem. In: Snoeyink, J., Lu, P., Su, K., Wang, L. (eds.) FAW-AAIM 2012. LNCS, vol. 7285, p. 368. Springer, Heidelberg (2012)

    Google Scholar 

  12. Compeau, P.E.C.: A simplified view of dcj-indel distance. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS (LNBI), vol. 7534, pp. 365–377. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements, 1st edn. The MIT Press (2009)

    Google Scholar 

  14. Gao, N., Yang, N., Tang, J.: Ancestral genome inference using a genetic algorithm approach. PLoS One 8(5) (2013)

    Google Scholar 

  15. Hannenhalli, S.: Polynomial-time algorithm for computing translocation distance between genomes. Discrete Applied Mathematics 71(1-3), 137–151 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lenne, R., Solnon, C., Stützle, T., Tannier, E., Birattari, M.: Reactive Stochastic Local Search Algorithms for the Genomic Median Problem. In: van Hemert, J., Cotta, C. (eds.) EvoCOP 2008. LNCS, vol. 4972, pp. 266–276. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Lin, Y., Hu, F., Tang, J., Moret, B.M.: Maximum likelihood phylogenetic reconstruction from high-resolution whole-genome data and a tree of 68 eukaryotes. In: Proc. 18th Pacific Symp. on Biocomputing, PSB 2013, pp. 285–296. IEEE Computer Society, Washington, DC (2013)

    Google Scholar 

  18. Marron, M., Swenson, K.M., Moret, B.M.E.: Genomic distances under deletions and insertions. In: Warnow, T., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 537–547. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Moret, B.M.E., Tang, J., San Wang, L., Warnow, Y.: Steps toward accurate reconstructions of phylogenies from gene-order data. J. Comput. Syst. Sci 65, 508–525 (2002)

    Article  MATH  Google Scholar 

  20. Moret, B.M.E., Wang, L.S., Warnow, T., Wyman, S.K.: New approaches for reconstructing phylogenies from gene order data. In: ISMB (Supplement of Bioinformatics), pp. 165–173 (2001)

    Google Scholar 

  21. Nguyen, C.T., Tay, Y.C., Zhang, L.: Divide-and-conquer approach for the exemplar breakpoint distance. Bioinformatics 21(10), 2171–2176 (2005)

    Article  Google Scholar 

  22. Pe’er, I., Shamir, R.: The median problems for breakpoints are np-complete. Elec. Colloq. on Comput. Complexity 71 (1998)

    Google Scholar 

  23. Pevzner, P.A.: Computational Molecular Biology: An Algorithmic Approach, 1st edn. Computational Molecular Biology. A Bradford Book (August 2000)

    Google Scholar 

  24. Rajan, V., Xu, A.W., Lin, Y., Swenson, K.M., Moret, B.M.E.: Heuristics for the inversion median problem. BMC Bioinformatics 11(S-1), 30 (2010)

    Article  Google Scholar 

  25. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917 (1999)

    Article  Google Scholar 

  26. Shao, M., Lin, Y.: Approximating the edit distance for genomes with duplicate genes under dcj, insertion and deletion. BMC Bioinformatics 13(S-19), S13 (2012)

    Google Scholar 

  27. Shao, M., Lin, Y., Moret, B.: An exact algorithm to compute the DCJ distance for genomes with duplicate genes. In: Sharan, R. (ed.) RECOMB 2014. LNCS (LNBI), vol. 8394, pp. 280–292. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  28. Swenson, K.M., Marron, M., Earnest-DeYoung, J.V., Moret, B.M.E.: Approximating the true evolutionary distance between two genomes. In: Demetrescu, C., Sedgewick, R., Tamassia, R. (eds.) ALENEX/ANALCO, pp. 121–129. SIAM (2005)

    Google Scholar 

  29. Tang, J., Moret, B.M.E.: Phylogenetic reconstruction from gene-rearrangement data with unequal gene content. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 37–46. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  30. Xu, A.W.: DCJ median problems on linear multichromosomal genomes: Graph representation and fast exact solutions. In: Ciccarelli, F.D., Miklós, I. (eds.) RECOMB-CG 2009. LNCS (LNBI), vol. 5817, pp. 70–83. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  31. Xu, A.W.: A fast and exact algorithm for the median of three problem: A graph decomposition approach. Journal of Computational Biology 16(10), 1369–1381 (2009)

    Article  MathSciNet  Google Scholar 

  32. Xu, A.W., Moret, B.M.E.: Gasts: Parsimony scoring under rearrangements. In: Przytycka, T.M., Sagot, M.-F. (eds.) WABI 2011. LNCS (LNBI), vol. 6833, pp. 351–363. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  33. Xu, A.W., Sankoff, D.: Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 25–37. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  34. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  Google Scholar 

  35. Yancopoulos, S., Friedberg, R.: Sorting genomes with insertions, deletions and duplications by DCJ. In: Nelson, C.E., Vialette, S. (eds.) RECOMB-CG 2008. LNCS (LNBI), vol. 5267, pp. 170–183. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  36. Yin, Z., Tang, J., Schaeffer, S.W., Bader, D.A.: Streaming breakpoint graph analytics for accelerating and parallelizing the computation of dcj median of three genomes. In: ICCS, pp. 561–570 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yin, Z., Tang, J., Schaeffer, S.W., Bader, D.A. (2014). A Lin-Kernighan Heuristic for the DCJ Median Problem of Genomes with Unequal Contents. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08783-2_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08782-5

  • Online ISBN: 978-3-319-08783-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics