Abstract
Given a set of n points on a line, where each point has one of k colors, and given an integer s i ≥ 1 for each color i, 1 ≤ i ≤ k, the problem Shortest Color-Spanning t Intervals (SCSI-t) aims at finding t intervals to cover at least s i points of each color i, such that the maximum length of the intervals is minimized. Chen and Misiolek introduced the problem SCSI-1, and presented an algorithm running in O(n) time if the input points are sorted. Khanteimouri et al. gave an O(n 2logn) time algorithm for the special case of SCSI-2 with s i = 1 for all colors i. In this paper, we present an improved algorithm with running time of O(n 2) for SCSI-2 with arbitrary s i ≥ 1. We also obtain some interesting results for the general problem SCSI-t. From the negative direction, we show that approximating SCSI-t within any ratio is NP-hard when t is part of the input, is W[2]-hard when t is the parameter, and is W[1]-hard with both t and k as parameters. Moreover, the NP-hardness and the W[2]-hardness with parameter t hold even if s i = 1 for all i. From the positive direction, we show that SCSI-t with s i = 1 for all i is fixed-parameter tractable with k as the parameter, and admits an exact algorithm running in O(2k n· max {k,logn}) time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: Smallest color-spanning objects. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 278–289. Springer, Heidelberg (2001)
Barba, L., Durocher, S., Fraser, R., Hurtado, F., Mehrabi, S., Mondal, D., Morrison, J., Skala, M., Wahid, M.A.: On k-enclosing objects in a coloured point set. In: Proceedings of the 25th Canadian Conference on Computational Geometry (CCCG 2013), pp. 229–234 (2013)
Chen, D.Z., Misiolek, E.: Algorithms for interval structures with applications. Theoretical Computer Science 508, 41–53 (2013)
Chen, D.Z., Wang, C., Wang, H.: Representing a functional curve by curves with fewer peaks. Discrete and Computational Geometry 46, 334–360 (2011)
Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Dominating set is fixed parameter tractable in claw-free graphs. Theoretical Computer Science 412, 6982–7000 (2011)
Das, S., Goswami, P.P., Nandy, S.C.: Smallest color-spanning objects revisited. International Journal of Computational Geometry and Applications 19, 457–478 (2009)
Fan, C., Luo, J., Zhu, B.: Tight approximation bounds for connectivity with a color-spanning set. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 590–600. Springer, Heidelberg (2013)
Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science 410, 53–61 (2009)
Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets. In: Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 285–292. Springer, Heidelberg (2010)
Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets is hard. Information Processing Letters 111, 1054–1056 (2011)
Jiang, M.: The zero exemplar distance problem. Journal of Computational Biology 18, 1077–1086 (2011)
Ju, W., Fan, C., Luo, J., Zhu, B., Daescu, O.: On some geometric problems of color-spanning sets. Journal of Combinatorial Optimization 26, 266–283 (2013)
Khanteimouri, P., Mohades, A., Abam, M.A., Kazemi, M.R.: Spanning colored points with intervals. In: Proceedings of the 25th Canadian Conference on Computational Geometry (CCCG 2013), pp. 265–270 (2013)
Khanteimouri, P., Mohades, A., Abam, M.A., Kazemi, M.R.: Computing the smallest color-spanning axis-parallel square. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 634–643. Springer, Heidelberg (2013)
Marx, D.: Parameterized complexity and approximation algorithms. The Computer Journal 51, 60–78 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Jiang, M., Wang, H. (2014). Shortest Color-Spanning Intervals. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-08783-2_25
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08782-5
Online ISBN: 978-3-319-08783-2
eBook Packages: Computer ScienceComputer Science (R0)