Skip to main content

Shortest Color-Spanning Intervals

  • Conference paper
Computing and Combinatorics (COCOON 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8591))

Included in the following conference series:

Abstract

Given a set of n points on a line, where each point has one of k colors, and given an integer s i  ≥ 1 for each color i, 1 ≤ i ≤ k, the problem Shortest Color-Spanning t Intervals (SCSI-t) aims at finding t intervals to cover at least s i points of each color i, such that the maximum length of the intervals is minimized. Chen and Misiolek introduced the problem SCSI-1, and presented an algorithm running in O(n) time if the input points are sorted. Khanteimouri et al. gave an O(n 2logn) time algorithm for the special case of SCSI-2 with s i  = 1 for all colors i. In this paper, we present an improved algorithm with running time of O(n 2) for SCSI-2 with arbitrary s i  ≥ 1. We also obtain some interesting results for the general problem SCSI-t. From the negative direction, we show that approximating SCSI-t within any ratio is NP-hard when t is part of the input, is W[2]-hard when t is the parameter, and is W[1]-hard with both t and k as parameters. Moreover, the NP-hardness and the W[2]-hardness with parameter t hold even if s i  = 1 for all i. From the positive direction, we show that SCSI-t with s i  = 1 for all i is fixed-parameter tractable with k as the parameter, and admits an exact algorithm running in O(2k n· max {k,logn}) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: Smallest color-spanning objects. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 278–289. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Barba, L., Durocher, S., Fraser, R., Hurtado, F., Mehrabi, S., Mondal, D., Morrison, J., Skala, M., Wahid, M.A.: On k-enclosing objects in a coloured point set. In: Proceedings of the 25th Canadian Conference on Computational Geometry (CCCG 2013), pp. 229–234 (2013)

    Google Scholar 

  3. Chen, D.Z., Misiolek, E.: Algorithms for interval structures with applications. Theoretical Computer Science 508, 41–53 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, D.Z., Wang, C., Wang, H.: Representing a functional curve by curves with fewer peaks. Discrete and Computational Geometry 46, 334–360 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Dominating set is fixed parameter tractable in claw-free graphs. Theoretical Computer Science 412, 6982–7000 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Das, S., Goswami, P.P., Nandy, S.C.: Smallest color-spanning objects revisited. International Journal of Computational Geometry and Applications 19, 457–478 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fan, C., Luo, J., Zhu, B.: Tight approximation bounds for connectivity with a color-spanning set. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 590–600. Springer, Heidelberg (2013)

    Google Scholar 

  8. Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theoretical Computer Science 410, 53–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets. In: Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 285–292. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets is hard. Information Processing Letters 111, 1054–1056 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jiang, M.: The zero exemplar distance problem. Journal of Computational Biology 18, 1077–1086 (2011)

    Article  MathSciNet  Google Scholar 

  12. Ju, W., Fan, C., Luo, J., Zhu, B., Daescu, O.: On some geometric problems of color-spanning sets. Journal of Combinatorial Optimization 26, 266–283 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Khanteimouri, P., Mohades, A., Abam, M.A., Kazemi, M.R.: Spanning colored points with intervals. In: Proceedings of the 25th Canadian Conference on Computational Geometry (CCCG 2013), pp. 265–270 (2013)

    Google Scholar 

  14. Khanteimouri, P., Mohades, A., Abam, M.A., Kazemi, M.R.: Computing the smallest color-spanning axis-parallel square. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 634–643. Springer, Heidelberg (2013)

    Google Scholar 

  15. Marx, D.: Parameterized complexity and approximation algorithms. The Computer Journal 51, 60–78 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jiang, M., Wang, H. (2014). Shortest Color-Spanning Intervals. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08783-2_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08782-5

  • Online ISBN: 978-3-319-08783-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics