Skip to main content

Reconfiguration of Dominating Sets

  • Conference paper
Computing and Combinatorics (COCOON 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8591))

Included in the following conference series:

Abstract

We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph G is a set S of vertices such that each vertex is either in S or has a neighbour in S. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions s and t such that each pair of consecutive solutions is adjacent according to a specified adjacency relation. Two dominating sets are adjacent if one can be formed from the other by the addition or deletion of a single vertex.

For various values of k, we consider properties of D k (G), the graph consisting of a vertex for each dominating set of size at most k and edges specified by the adjacency relation. Addressing an open question posed by Haas and Seyffarth, we demonstrate that D Γ(G) + 1(G) is not necessarily connected, for Γ(G) the maximum cardinality of a minimal dominating set in G. The result holds even when graphs are constrained to be planar, of bounded tree-width, or b-partite for b ≥ 3. Moreover, we construct an infinite family of graphs such that D γ(G) + 1(G) has exponential diameter, for γ(G) the minimum size of a dominating set. On the positive side, we show that D n − μ (G) is connected and of linear diameter for any graph G on n vertices with a matching of size at least μ + 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bonamy, M., Bousquet, N.: Recoloring bounded treewidth graphs. In: Proc. of the 7th Latin-American Algorithms, Graphs, and Optimization Symp. (2013)

    Google Scholar 

  2. Bonsma, P.: The complexity of rerouting shortest paths. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 222–233. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theor. Comput. Sci. 410(50), 5215–5226 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colourings. Discrete Math 308(56), 913–919 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. of Graph Theory 67(1), 69–82 (2011)

    Article  MATH  Google Scholar 

  6. Cereceda, L., van den Heuvel, J., Johnson, M.: Mixing 3-colourings in bipartite graphs. European J. of Combinatorics 30(7), 1593–1606 (2009)

    Article  MATH  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York (1997)

    Google Scholar 

  8. Fricke, G., Hedetniemi, S.M., Hedetniemi, S.T., Hutson, K.R.: γ-Graphs of Graphs. Discussiones Mathematicae Graph Theory 31(3), 517–531 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of boolean satisfiability: computational and structural dichotomies. SIAM J. on Computing 38(6), 2330–2355 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Haas, R., Seyffarth, K.: The k-Dominating Graph. Graphs and Combinatorics (March 2013) (online publication)

    Google Scholar 

  11. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci. 343(1-2), 72–96 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ito, T., Demaine, E.D.: Approximability of the subset sum reconfiguration problem. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 58–69. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12-14), 1054–1065 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a graph. Discrete Applied Math. 160(15), 2199–2207 (2012)

    Article  MATH  Google Scholar 

  15. Ito, T., Kawamura, K., Ono, H., Zhou, X.: Reconfiguration of list L(2,1)-labelings in a graph. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 34–43. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths. Theor. Comput. Sci. 412(39), 5205–5210 (2011)

    Article  MATH  Google Scholar 

  17. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012)

    Article  MATH  Google Scholar 

  18. Mayr, E.W., Plaxton, C.G.: On the spanning trees of weighted graphs. Combinatorica 12(4), 433–447 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Suzuki, A., Mouawad, A.E., Nishimura, N. (2014). Reconfiguration of Dominating Sets. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08783-2_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08782-5

  • Online ISBN: 978-3-319-08783-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics