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Abstract. We explore a reconfiguration version of the dominating set
problem, where a dominating set in a graph G is a set S of vertices such
that each vertex is either in S or has a neighbour in S. In a reconfigu-
ration problem, the goal is to determine whether there exists a sequence
of feasible solutions connecting given feasible solutions s and t such that
each pair of consecutive solutions is adjacent according to a specified ad-
jacency relation. Two dominating sets are adjacent if one can be formed
from the other by the addition or deletion of a single vertex.
For various values of k, we consider properties of Dk(G), the graph con-
sisting of a vertex for each dominating set of size at most k and edges
specified by the adjacency relation. Addressing an open question posed
by Haas and Seyffarth, we demonstrate that DΓ (G)+1(G) is not neces-
sarily connected, for Γ (G) the maximum cardinality of a minimal dom-
inating set in G. The result holds even when graphs are constrained to
be planar, of bounded tree-width, or b-partite for b ≥ 3. Moreover, we
construct an infinite family of graphs such that Dγ(G)+1(G) has expo-
nential diameter, for γ(G) the minimum size of a dominating set. On the
positive side, we show that Dn−m(G) is connected and of linear diameter
for any graph G on n vertices having at least m+ 1 independent edges.

1 Introduction

The reconfiguration version of a problem determines whether it is possible to
transform one feasible solution s into a target feasible solution t in a step-by-
step manner (a reconfiguration) such that each intermediate solution is also fea-
sible. The study of such problems has received considerable attention in recent
literature [8,9,13,15,16] and is interesting for a variety of reasons. From an algo-
rithmic standpoint, reconfiguration models dynamic situations in which we seek
to transform a solution into a more desirable one, maintaining feasibility during
the process. Reconfiguration also models questions of evolution; it can represent
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the evolution of a genotype where only individual mutations are allowed and all
genotypes must satisfy a certain fitness threshold, i.e. be feasible. Moreover, the
study of reconfiguration yields insights into the structure of the solution space of
the underlying problem, crucial for the design of efficient algorithms. In fact, one
of the initial motivations behind such questions was to study the performance of
heuristics [9] and random sampling methods [4], where connectivity and other
properties of the solution space play a crucial role. Even though reconfiguration
gained popularity in the last decade or so, the notion of exploring the solution
space of a given problem has been previously considered in numerous settings.
One such example is the work of Mayr and Plaxton [18], where the authors
consider the problem of transforming one minimum spanning tree of a weighted
graph into another by a sequence of edge swaps.

Some of the problems for which the reconfiguration version has been studied
include vertex colouring [1,3,4,6,5], list edge-colouring [14], list L(2,1)-labeling [15],
block puzzles [11], independent set [11,13], clique, set cover, integer program-
ming, matching, spanning tree, matroid bases [13], satisfiability [9], shortest
path [2,16], subset sum [12], dominating set [10,19], odd cycle transversal, feed-
back vertex set, and hitting set [19]. For most NP-complete problems, the re-
configuration version has been shown to be PSPACE-complete [13,14,17], while
for some problems in P, the reconfiguration question could be either in P [13]
or PSPACE-complete [2].

The problem of transforming input s into input t can be viewed as the prob-
lem of determining if there is a path from s to t in a graph representing feasible
solutions. Such a path is called a reconfiguration sequence. For the problem of
dominating set, the k-dominating graph, defined formally in Section 2, consists
of a node for each feasible solution and an edge for each pair of solutions that
differ by a single vertex. Finding an s-t path in this graph has been shown to be
W[2]-hard [19], and hence not likely to yield even a fixed-parameter tractable
algorithm [7].

Although having received less attention than the s-t path problem, other
characteristics of the solution graph have been studied. Determining the diameter
of the reconfiguration graph will result in an upper bound on the length of any
reconfiguration sequence. For a problem such as colouring, one can determine
the mixing number, the minimum number of colours needed to ensure that the
entire graph is connected; such a number has been obtained for the problem of
list edge-colouring on trees [14].

In previous work on reconfiguration of dominating sets, Haas and Seyf-
farth [10] considered the connectivity of the graph of solutions of size at most k,
for various values of k relative to n, the number of vertices in the input graph
G. They demonstrated that the graph is connected when k = n − 1 and G
has at least two independent edges, or when k is one greater than the maxi-
mum cardinality of a minimal dominating set and G is non-trivially bipartite or
chordal. They left as an open question, answered negatively here, whether the
latter results could be extended to all graphs.
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In this paper we extend previous work by showing in Section 3 that the
solution graph is connected and of linear diameter for k = n−m for any input
graph with at least m+ 1 independent edges, for any nonnegative integer m. In
Section 4, we give a series of counterexamples demonstrating that DΓ (G)+1(G) is
not guaranteed to be connected for planar graphs, graphs of bounded treewidth,
or b-partite graphs for b ≥ 3. In Section 5, we pose and answer a question about
the diameter of Dγ(G)+1(G) by showing that there is an infinite family of graphs
of exponential diameter.

2 Preliminaries

We assume that each G is a simple, undirected graph on n vertices with vertex
set V (G) and edge set E(G). The diameter of G is the maximum over all pairs
of vertices u and v in V (G) of the length of the shortest path between u and v.

A set S ⊆ V (G) is a dominating set of G if and only if every vertex in V (G)\S
is adjacent to a vertex in S. The minimum cardinality of any dominating set of G
is denoted by γ(G). Similarly, Γ (G) is the maximum cardinality of any minimal
dominating set in G.

For a vertex u ∈ V (G) and a dominating set S of G, we say u is dominated

by v ∈ S if u /∈ S and u is adjacent to v. For a vertex v in a dominating set S,
a private neighbour of v is a vertex dominated by v and not dominated by any
other vertex in S; the private neighbourhood of v is the set of private neighbours
of v. A vertex v in a dominating set S is deletable if S \ {v} is also a dominating
set of G.

Fact 1 A vertex v is deletable if and only if v has at least one neighbour in S
and v has no private neighbour.

Given a graph G and a positive integer k, we consider the k-dominating graph

of G, Dk(G), such that each vertex in V (Dk(G)) corresponds to a dominating
set of G of cardinality at most k. Two vertices are adjacent in Dk(G) if and only
if the corresponding dominating sets differ by either the addition or the deletion
of a single vertex; each such operation is a reconfiguration step. Formally, if A
and B are dominating sets of G of cardinality at most k, then there exists an
edge between A and B if and only if there exists a vertex u ∈ V (G) such that
(A \B) ∪ (B \ A) = {u}. We refer to vertices in G using lower case letters (e.g.
u, v) and to the vertices in Dk(G), and by extension their associated dominating
sets, using upper case letters (e.g. A,B). We write A ↔ B if there exists a path
in Dk(G) joining A and B. The following fact is a consequence of our ability to
add vertices as needed to form B from A.

Fact 2 If A ⊆ B, then A ↔ B and B ↔ A.

3 Graphs with m + 1 independent edges

Theorem 1. For any nonnegative integer m, if G has at least m+1 independent

edges, then Dn−m(G) is connected for n = |V (G)|.
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Proof. For G a graph with m+1 independent edges I = {{ui, wi} | 0 ≤ i ≤ m},
we define U = {ui | 0 ≤ i ≤ m}, W = {wi | 0 ≤ i ≤ m}, and the set of outsiders
R = V (G) \ (U ∪W ).

Using any dominating set S of G, we can partition I as follows: edge {ui, wi},
0 ≤ i ≤ m, is clean if neither ui nor wi is in S, u-odd if ui ∈ S but wi /∈ S, w-odd
if wi ∈ S but ui /∈ S, odd if {ui, wi} is u-odd or w-odd, and even if {ui, wi} ⊆ S.
We use clean(S) and odd(S), respectively, to denote the numbers of clean and
odd edges for S. Similarly, we let u-odd(S) and w-odd(S) denote the numbers of
u-odd and w-odd edges for S. In the example graph shown in Figure 1, m+1 = 7
and R = ∅. There is a single clean edge, namely {u1, w1}, three w-odd edges,
two u-odd edges, and a single even edge.

u1 u2 u3 u4 u5 u6

w1 w2 w3 w4 w5 w6

u0

w0

Fig. 1. Vertices in S are marked with squares

It suffices to show that for S an arbitrary dominating set of G such that
|S| ≤ n−m, S ↔ N for N = V (G) \W ; N is clearly a dominating set as each
vertex wi ∈ W = V (G) \N is dominated by ui. By Fact 2, for S′ a dominating
set of G such that S′ ⊇ S and |S′| = n − m, since S′ is a superset of S, then
S ↔ S′. The reconfiguration from S′ to N can be broken into three stages. In
the first stage, for a dominating set S0 with no clean edges, we show S′ ↔ S0

by repeatedly decrementing the number of clean edges (ui or wi is added to the
dominating set for some 0 ≤ i ≤ m). In the second stage, for Tm with m u-odd
edges and one even edge, we show S0 ↔ Tm by repeatedly incrementing the
number of u-odd edges. Finally, we observe that deleting the single remaining
element in Tm ∩W yields Tm ↔ N .

In stage 1, for x = clean(S′), we show that S′ = Sx ↔ Sx−1 ↔ Sx−2 ↔ . . . ↔
S0 where for each 0 ≤ j ≤ x, Sj is a dominating set of G such that |Sj | = n−m
and clean(Sj) = j. To show that Sa ↔ Sa−1 for arbitrary 1 ≤ a ≤ x, we prove
that there is a deletable vertex in some even edge and hence a vertex in a clean
edge can be added in the next reconfiguration step. For b = odd(Sa), the set E
of vertices in even edges is of size 2((m+1)− a− b). Since each vertex in E has
a neighbour in Sa, if at least one vertex in E does not have a private neighbour,
then E contains a deletable vertex (Fact 1).

The m vertices in V (G) \ Sa are the only possible candidates to be private
neighbours. Of these, the b vertices of V (G) \Sa in odd edges cannot be private
neighbours of vertices in E, as each is the neighbour of a vertex in Sa \ E (the
other endpoint of the edge). The number of remaining candidates, m − b, is
smaller than the number of vertices in E; m ≥ 2a+b as the vertices of V (G)\Sa

must contain both endpoints of any clean edge and one endpoint for any odd
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edge. Hence, there exists at least one deletable vertex in E. When we delete
such a vertex and add an arbitrary endpoint of a clean edge, the clean edge
becomes an odd edge and the number of clean edges decreases. We can therefore
reconfigure from Sa to the desired dominating set, and by applying the same
argument a times, to S0.

In the second stage we show that for y = u-odd(S0), S0 = Ty ↔ Ty+1 ↔
Ty+2 ↔ . . . ↔ Tm where for each y ≤ j ≤ m, Tj is a dominating set of G such
that |Tj| = n−m, clean(Tj) = 0, and u-odd(Tj) = j. To show that Tc ↔ Tc+1

for arbitrary y ≤ c ≤ m− 1, we use a counting argument to find a vertex in an
even edge that is in W and deletable; in one reconfiguration step the vertex is
deleted, increasing the number of u-odd edges, and in the next reconfiguration
step an arbitrary vertex in R or in a w-odd edge is added to the dominating set.
We let d = w-odd(Tc) (i.e. the number of w-odd edges for Tc) and observe that
since there are c u-odd edges, d w-odd edges, and no clean edges, there exist
(m+1)− c− d even edges. We define Ew to be the set of vertices in W that are
in the even edges, and observe that each has a neighbour in Tc; a vertex in Ew

will be deletable if it does not have a private neighbour.

Of the m vertices in V (G)\Tc, only those in R are candidates to be private
neighbours of vertices in Ew, as each vertex in an odd edge has a neighbour in
Tc. As there are c u-odd edges and d w-odd edges, the total number of vertices
in R∩V (G)\Tc is m− c− d. Since this is smaller than the number of vertices in
Ew, at least one vertex in Ew must be deletable. When we delete such a vertex
from Tc and in the next step add an arbitrary vertex from the outsiders or w-
odd edges, the even edge becomes a u-odd edge and the number of u-odd edges
increases. Note that we can always find such a vertex since there are m− c− d
outsiders, d w-odd edges, and c ≤ m− 1. Hence, we can reconfigure from Tc to
Tc+1, and by m− c repetitions, to Tm. ⊓⊔

Corollary 1 results from the length of the reconfiguration sequence formed in
Theorem 1; reconfiguring to S′ can be achieved in at most n−m steps, and stages
1 and 2 require at most 2m steps each, as m ∈ O(n) is at most the numbers of
clean and u-odd edges. Theorem 2 shows that Theorem 1 is tight.

Corollary 1. The diameter of Dn−m(G) is in O(n) for G a graph with m+ 1
independent edges.

Theorem 2. For any nonnegative integer m, there exists a graph Gm with m
independent edges such that Dn−m(Gm) is not connected.

Proof. Let Gm be a path on n = 2m vertices. Clearly, Gm has m disjoint edges,
n−m = 2m−m = m, and Dn−m(Gm) = Dm(Gm). We let S be a dominating set
of Gm such that |S| ≥ m+1. At least one vertex in S must have all its neighbors
in S and is therefore deletable. It follows that Γ (Gm) = m and Dn−m(Gm) =
Dm(Gm) = DΓ (Gm)(Gm) which is not connected by the result of Haas and
Seyffarth [10, Lemma 3]. ⊓⊔
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4 DΓ (G)+1(G) may not be connected

In this section we demonstrate that DΓ (G)+1(G) is not connected for an infinite
family of graphs G(d,b) for all positive integers b ≥ 3 and d ≥ 2, where graph
G(d,b) is constructed from d+1 cliques of size b. We demonstrate using the graph
G(4,3) as shown in part (a) of Figure 2, consisting of fifteen vertices partitioned
into five cliques of size 3: the outer clique C0, consisting of the top, left, and
right outer vertices o1, o2, and o3, and the four inner cliques C1 through C4,
ordered from left to right. We use v(i,1), v(i,2), and v(i,3) to denote the top, left,
and right vertices in clique Ci, 1 ≤ i ≤ 4. More generally, a graph G(d,b) has
d + 1 b-cliques Ci for 0 ≤ i ≤ d. The clique C0 consists of outer vertices oj for
1 ≤ j ≤ b, and for each inner clique Ci, 1 ≤ i ≤ d and each 1 ≤ j ≤ b, there
exists an edge {oj, v(i,j)}.

o1

o2 o3

C1 C2 C3 C4

o1

o2

o3

C1 C2

(a) (b)

Fig. 2. Counterexamples for (a) general and (b) planar graphs

For any 1 ≤ j ≤ b a dominating set does not contain oj , then the vertices v(i,j)
of the inner cliques must be dominated by vertices in the inner cliques (hence
Fact 3). In addition, the outer vertex oj can be dominated only by another outer
vertex or some vertex v(i,j), 1 ≤ i ≤ d (hence Fact 4).

Fact 3 Any dominating set that does not contain all of the outer vertices must

contain at least one vertex from each of the inner cliques.

Fact 4 Any dominating set that does not contain any outer vertex must contain

at least one vertex of the form v(·,j) for each 1 ≤ j ≤ b.

Lemma 1. For each graph G(d,b) as defined above, Γ (G(d,b)) = d+ b− 2.

Proof. We first demonstrate that there is a minimal dominating set of size d+
b − 2, consisting of {v(1,j) | 2 ≤ j ≤ b} ∪ {v(i,1) | 2 ≤ i ≤ d}; the first set
dominates b−1 of the outer vertices and the first inner clique and the second set
dominates o1 and the rest of the inner cliques. The dominating set is minimal,
as the removal of any vertex v(1,j), 2 ≤ j ≤ b, would leave vertex oj with no
neighbour in the dominating set and the removal of any v(i,1), 2 ≤ i ≤ d, would
leave {v(i,j) | 1 ≤ j ≤ b} with no neighbour in the dominating set.
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By Fact 3, any dominating set that does not contain all outer vertices must
contain at least one vertex in each of the d inner cliques. Since the outer vertices
form a minimal dominating set, any other minimal dominating set must contain
at least one vertex from each of the inner cliques.

We now consider any dominating set S of size at least d + b − 1 containing
one vertex for each inner clique and show that it is not minimal. If S contains
at least one outer vertex, we can find a smaller dominating set by removing all
but the outer vertex and one vertex for each inner clique, yielding a total of
d+ 1 < d+ b− 1 vertices (since b ≥ 3). Now suppose that S consists entirely of
inner vertices; by Fact 4, S contains at least one vertex of the form v(·,j) for each
1 ≤ j ≤ b. Moreover, for at least one value 1 ≤ j′ ≤ b, there exists more than one
vertex of the form v(·,j′) as d+ b− 1 > b. This allows us to choose b vertices of
the form v(·,j) for each 1 ≤ j ≤ b that dominate at least two inner cliques as well
as all outer vertices. By selecting one member of S from each of the remaining
d−2 inner cliques, we form a dominating set of size d+b−2 < d+b−1, proving
that S is not minimal. ⊓⊔

Theorem 3. There exists an infinite family of graphs such that for each G in

the family, DΓ (G)+1(G) is not connected.

Proof. For any positive integers b ≥ 3 and d ≥ 2, we show that there is no
path between dominating sets A to B in Dd+b−1(G(d,b)), where A consists of the
vertices in the outer clique and B consists of {v(i,ℓ) | 1 ≤ i ≤ d, 1 ≤ ℓ ≤ b, i ≡
ℓ (mod b)};

By Fact 3, before we can delete any of the vertices in A, we need to add
one vertex from each of the inner cliques, resulting in a dominating set of size
d + b = Γ (G(d,b)) + 2. As there is no such vertex in our graph, there is no way
to connect A and B. ⊓⊔

Each graph G(d,b) constructed for Theorem 3 is a b-partite graph; we can
partition the vertices into b independent sets, where the jth set, 1 ≤ j ≤ b is
defined as {v(i,j) | 1 ≤ i ≤ d} ∪ {oi | 1 ≤ i ≤ d, i ≡ j + 1 (mod b)}. Moreover, we
can form a tree decomposition of width 2b− 1 of G(d,b), for all positive integers
b ≥ 3 and d ≥ b, by creating bags with the vertices of the inner cliques and
adding all outer vertices to each bag.

Corollary 2. For every positive integer b ≥ 3, there exists an infinite family of

graphs of tree-width 2b − 1 such that for each G in the family, DΓ (G)+1(G) is

not connected, and an infinite family of b-partite graphs such that for each G in

the family, DΓ (G)+1(G) is not connected.

Theorem 3 does not preclude the possibility that when restricted to planar
graphs or any other graph class that excludes G(d,b), DΓ (G)+1(G) is connected.
However, the next corollary follows directly from the fact that G(2,3) is planar
(part (b) of Figure 2).

Corollary 3. There exists a planar graph G for which DΓ (G)+1(G) is not con-

nected.
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5 On the diameter of Dk(G)

In this section, we obtain a lower bound on the diameter of the k-dominating
graph of a family of graphs Gn. We describe Gn in terms of several component
subgraphs, each playing a role in forcing the reconfiguration of dominating sets.

A linkage gadget (part (a), Figure 3) consists of five vertices, the external

vertices (or endpoints) e1 and e2, and the internal vertices i1, i2, and i3. The
external vertices are adjacent to each internal vertex as well as to each other;
the following results from the internal vertices having degree two:

Fact 5 In a linkage gadget, the minimum dominating sets of size one are {e1}
and {e2}. Any dominating set containing an internal vertex must contain at least

two vertices. Any dominating set in a graph containing m vertex-disjoint linkage

gadgets with all internal vertices having degree exactly two must contain at least

one vertex in each linkage gadget.

e1 e2

i2

i1

i3

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

r1

r2

r3

r4

r5

r6

Lj Lj+1

gj,1

gj,2

gj,3

gj,4

gj,5

gj,6 G5

L1 L2 L3 L4 L5

(a) (b) (c) (d)

Fig. 3. Parts of the construction

A ladder (part (b) of Figure 3, linkages shown as double edges) is a graph
consisting of twelve ladder vertices paired into six rungs, where rung i consists
of the vertices ℓi and ri for 1 ≤ i ≤ 6, as well as the 45 internal vertices of
fifteen linkage gadgets. Each linkage gadget is associated with a pair of ladder
vertices, where the ladder vertices are the external vertices in the linkage gadget.
The fifteen pairs are as follows: ten vertical pairs {ℓi, ℓi+1} and {ri, ri+1} for
1 ≤ i ≤ 5, and five cross pairs {ℓi+1, ri} for 1 ≤ i ≤ 5. For convenience, we refer
to vertices ℓi, 1 ≤ i ≤ 6 and the associated linkage gadgets as the left side of the

ladder and to vertices ri, 1 ≤ i ≤ 6 and the associated linkage gadgets as the
right side of the ladder, or collectively as the sides of the ladder.

The graph Gn consists of n ladders L1 through Ln and n− 1 sets of gluing
vertices, where each set consists of three clusters of two vertices each. For ℓj,i
and rj,i, 1 ≤ i ≤ 6, the ladder vertices of ladder Lj, and gj,1 through gj,6 the
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gluing vertices that join ladders Lj and Lj+1, we have the following connections
for 1 ≤ j ≤ n− 1:

– Edges connecting the bottom cluster to the bottom two rungs of ladder Lj and
the top rung of ladder Lj+1: {ℓj,1, gj,1}, {ℓj,1, gj,2}, {rj,2, gj,1}, {rj,2, gj,2},
{ℓj+1,6, gj,1}, {rj+1,6, gj,2}

– Edges connecting the middle cluster to the middle two rungs of ladder
Lj and the bottom rung of ladder Lj+1: {ℓj,3, gj,3}, {ℓj,3, gj,4}, {rj,4, gj,3},
{rj,4, gj,4}, {ℓj+1,1, gj,3}, {rj+1,1, gj,4}

– Edges connecting the top cluster to the top two rungs of ladder Lj and
the top rung of ladder Lj+1: {ℓj,5, gj,5}, {ℓj,5, gj,6}, {rj,6, gj,5}, {rj,6, gj,6},
{ℓj+1,6, gj,5}, {rj+1,6, gj,6}

Figure 3 parts (c) and (d) show details of the construction of Gn; they depict,
respectively, two consecutive ladders and G5, both with linkages represented
as double edges. When clear from context, we sometimes use single subscripts
instead of double subscripts to refer to the vertices of a single ladder.

We let D = {{ℓ(j,2i−1), ℓ(j,2i)}, {r(j,2i−1), r(j,2i)} | 1 ≤ i ≤ 3, 1 ≤ j ≤ n}
denote a set of 6n pairs in Gn; the corresponding linkage gadgets are vertex-
disjoint. Then Fact 5 implies the following:

Fact 6 Any dominating set S of Gn must contain at least one vertex of each of

the linkage gadgets for vertical pairs in the set D and hence is of size at least

6n; if S contains an internal vertex, then |S| > 6n.

Choosing an arbitrary external vertex for each vertical pair does not guar-
antee that all vertices on the side of a ladder are dominated; for example, the
set {ℓi | i ∈ {1, 4, 5}} does not dominate the internal vertices in the vertical pair
{ℓ2, ℓ3}. Choices that do not leave such gaps form the set C = {Ci | 1 ≤ i ≤ 4}
where C1 = {1, 3, 5}, C2 = {2, 3, 5}, C3 = {2, 4, 5}, and C4 = {2, 4, 6}.

Fact 7 In any dominating set S of size 6n and in any ladder L in Gn, the

restriction of S to L must be of the form Si for some 1 ≤ i ≤ 7, as illustrated

in Figure 4.

S1 S2 S3 S4 S5 S6 S7

Fig. 4. Minimum dominating sets for G1
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Proof. Fact 6 implies that the only choices for the left (right) vertices are {ℓi |
i ∈ Cj} ({ri | i ∈ Cj}) for 1 ≤ j ≤ 4. The sets Si, 1 ≤ i ≤ 7, are the only
combinations of these choices that dominate all the internal vertices in the cross
pairs. ⊓⊔

We say that ladder Lj is in state Si if the restriction of the dominating set to
Lj is of the form Si, for 1 ≤ j ≤ n and 1 ≤ i ≤ 7.

The exponential lower bound in Theorem 4 is based on counting how many
times each ladder is modified from S1 to S7 or vice versa; we say ladder Lj

undergoes a switch for each such modification. We first focus on a single ladder.

Fact 8 For S a dominating set of G1, a vertex v ∈ S is deletable if and only if

either v is the internal vertex of a linkage gadget one of whose external vertices

is in S, or for every linkage gadget containing v as an external vertex, either the

other external vertex is also in S or all internal vertices are in S.

Lemma 2. In Dγ(G1)+1(G1) there is a single reconfiguration sequence between

S1 and S7, of length 12.

Proof. We define P to be the path in the graph corresponding to the reconfigu-
ration sequence S1 ↔ S1 ∪ {ℓ2} ↔ S2 ↔ S2 ∪ {r2} ↔ S3 ↔ S3 ∪ {ℓ4} ↔ S4 ↔
S4 ∪ {r4} ↔ S5 ↔ S5 ∪ {ℓ6} ↔ S6 ↔ S6 ∪ {r6} ↔ S7 and demonstrate that
there is no shorter path between S1 and S7.

By Facts 7 and 6, G1 has exactly seven dominating sets of size six, and any
dominating set S of size seven contains two vertices from one vertical pair d in D
and one from each of the remaining five. The neighbours of S in Dγ(G1)+1(G1)
are the vertices corresponding to the sets Si, 1 ≤ i ≤ 7, obtained by deleting a
single vertex of S. The number of neighbours is thus at most two, depending on
which, if any, vertices in d are deletable.

If at least one of the vertices of S in d is an internal vertex, then at most one
vertex satisfies the first condition in Fact 8. Thus, for S to have two neighbours,
there must be a ladder vertex that satisfies the second condition of Fact 8, which
by inspection of Figure 4 can be seen to be false.

If instead d contains two ladder vertices, in order for S to have two neigh-
bours, the four ladder vertices on the side containing d must correspond to the
union of two of the sets in C. There are only three such unions, C1 ∪ C2, C2 ∪ C3,
and C3 ∪ C4, which implies that the only pairs with common neighbours are
{Si, Si+1} for 1 ≤ i ≤ 6, as needed to complete the proof. ⊓⊔

For n > 2, we cannot reconfigure ladders independently from each other, as
we need to ensure that all gluing vertices are dominated. For consecutive ladders
Lj and Lj+1, any cluster that is not dominated by Lj must be dominated by
Lj+1; the bottom, middle, and top clusters are not dominated by any vertex in
S2, S4, and S6, respectively.

Fact 9 In any dominating set S of Gn, for any 1 ≤ j < n, if Lj is in state S2,

then Lj+1 is in state S7; if Lj is in state S4, then Lj+1 is in state S1; and if Lj

is in state S6, then Lj+1 is in state S7.
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Lemma 3. For any reconfiguration sequence in which Lj and Lj+1 are initially

both in state S1, if Lj undergoes p switches then Lj+1 must undergo at least

2p+ 1 switches.

Proof. We use a simple counting argument. When p = 1, the result follows
immediately from Fact 9 since Lj can only reach state S7 if Lj+1 is reconfigured
from S1 to S7 to S1 and finally back to S7. After the first switch of Lj, both
ladders are in state S7.

For any subsequent switch of Lj, Lj starts in state S7 because for Lj to reach
S1 from S2 or to reach S7 from S6, by Fact 9 Lj+1 must have been in S7. Since
by definition Lj starts in S1 or S7, to enable Lj to undergo a switch, Lj+1 will
have to undergo at least two switches, namely S7 to S1 and back to S7. ⊓⊔

Theorem 4. For S a dominating set of Gn such that every ladder of Gn is

in state S1 and T a dominating set of Gn such that every ladder of Gn is in

state S7, the length of any reconfiguration sequence between S and T is at least

12(2n+1 − n− 2).

Proof. We first observe that Lemma 2 implies that the switch of any ladder
requires at least twelve reconfiguration steps; since the vertex associated with a
dominating set containing a gluing vertex will have degree at most one in the
k-dominating graph, there are no shortcuts formed.

To reconfigure from S to T , ladder L1 must undergo at least one switch. By
Lemma 3, ladder L2 will undergo at least 3 = 22 − 1 switches, hence 2j − 1
switches for ladder Lj, 1 ≤ j ≤ n. Since each switch requires twelve steps, the
total number of steps is thus at least 12

∑n
i=1 (2

i − 1) = 12(2n+1 − n− 2). ⊓⊔

Corollary 4. There exists an infinite family of graphs such that for each graph

Gn in the family, Dγ(Gn)+1(Gn) has diameter Ω(2n).

6 Conclusions and future work

In answering Haas and Seyffarth’s question concerning the connectivity ofDk(G)
for general graphs and k = Γ (G) + 1, we have demonstrated infinite families of
planar, bounded treewidth, and b-partite graphs for which the k-dominating
graph is not connected. It remains to be seen whether k-dominating graphs are
connected for graphs more general than non-trivially bipartite graphs or chordal
graphs, and whether DΓ (G)+2(G) is connected for all graphs. It would also be
useful to know if there is a value of k for which Dk(G) is guaranteed not to have
exponential diameter. Interestingly, for our connectivity and diameter examples,
incrementing the size of the sets by one is sufficient to break the proofs.
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