Abstract
We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph G is a set S of vertices such that each vertex is either in S or has a neighbour in S. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions s and t such that each pair of consecutive solutions is adjacent according to a specified adjacency relation. Two dominating sets are adjacent if one can be formed from the other by the addition or deletion of a single vertex.
For various values of k, we consider properties of D k (G), the graph consisting of a vertex for each dominating set of size at most k and edges specified by the adjacency relation. Addressing an open question posed by Haas and Seyffarth, we demonstrate that D Γ(G) + 1(G) is not necessarily connected, for Γ(G) the maximum cardinality of a minimal dominating set in G. The result holds even when graphs are constrained to be planar, of bounded tree-width, or b-partite for b ≥ 3. Moreover, we construct an infinite family of graphs such that D γ(G) + 1(G) has exponential diameter, for γ(G) the minimum size of a dominating set. On the positive side, we show that D n − μ (G) is connected and of linear diameter for any graph G on n vertices with a matching of size at least μ + 1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bonamy, M., Bousquet, N.: Recoloring bounded treewidth graphs. In: Proc. of the 7th Latin-American Algorithms, Graphs, and Optimization Symp. (2013)
Bonsma, P.: The complexity of rerouting shortest paths. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 222–233. Springer, Heidelberg (2012)
Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theor. Comput. Sci. 410(50), 5215–5226 (2009)
Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of vertex-colourings. Discrete Math 308(56), 913–919 (2008)
Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. J. of Graph Theory 67(1), 69–82 (2011)
Cereceda, L., van den Heuvel, J., Johnson, M.: Mixing 3-colourings in bipartite graphs. European J. of Combinatorics 30(7), 1593–1606 (2009)
Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York (1997)
Fricke, G., Hedetniemi, S.M., Hedetniemi, S.T., Hutson, K.R.: γ-Graphs of Graphs. Discussiones Mathematicae Graph Theory 31(3), 517–531 (2011)
Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of boolean satisfiability: computational and structural dichotomies. SIAM J. on Computing 38(6), 2330–2355 (2009)
Haas, R., Seyffarth, K.: The k-Dominating Graph. Graphs and Combinatorics (March 2013) (online publication)
Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci. 343(1-2), 72–96 (2005)
Ito, T., Demaine, E.D.: Approximability of the subset sum reconfiguration problem. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 58–69. Springer, Heidelberg (2011)
Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12-14), 1054–1065 (2011)
Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a graph. Discrete Applied Math. 160(15), 2199–2207 (2012)
Ito, T., Kawamura, K., Ono, H., Zhou, X.: Reconfiguration of list L(2,1)-labelings in a graph. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 34–43. Springer, Heidelberg (2012)
Kamiński, M., Medvedev, P., Milanič, M.: Shortest paths between shortest paths. Theor. Comput. Sci. 412(39), 5205–5210 (2011)
Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012)
Mayr, E.W., Plaxton, C.G.: On the spanning trees of weighted graphs. Combinatorica 12(4), 433–447 (1992)
Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Suzuki, A., Mouawad, A.E., Nishimura, N. (2014). Reconfiguration of Dominating Sets. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_35
Download citation
DOI: https://doi.org/10.1007/978-3-319-08783-2_35
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08782-5
Online ISBN: 978-3-319-08783-2
eBook Packages: Computer ScienceComputer Science (R0)