Abstract
Shallit and Wang studied deterministic automatic complexity of words. They showed that the automatic Hausdorff dimension \(I(\mathbf t)\) of the infinite Thue word satisfies \(1/3\le I(\mathbf t)\le 2/3\). We improve that result by showing that \(I(\mathbf t)\ge 1/2\). For nondeterministic automatic complexity we show \(I(\mathbf t)=1/2\). We prove that such complexity A N of a word x of length n satisfies \(A_N(x)\le b(n):=\lfloor n/2\rfloor + 1\). This enables us to define the complexity deficiency D(x) = b(n) − A N (x). If x is square-free then D(x) = 0. If x almost square-free in the sense of Fraenkel and Simpson, or if x is a strongly cube-free binary word such as the infinite Thue word, then D(x) ≤ 1. On the other hand, there is no constant upper bound on D for strongly cube-free words in a ternary alphabet, nor for cube-free words in a binary alphabet.
The decision problem whether D(x) ≥ d for given x, d belongs to NP ∩ E.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fraenkel, A.S., Simpson, R.J.: How many squares must a binary sequence contain? Electron. J. Combin. 2: Research Paper 2, approx., 9 p. (electronic) (1995)
Hyde, K.: Nondeterministic finite state complexity. Master’s thesis, University of Hawaii at Manoa, U.S.A. (2013)
Shallit, J., Wang, M.-W.: Automatic complexity of strings. J. Autom. Lang. Comb. 6(4), 537–554 (2001), 2nd Workshop on Descriptional Complexity of Automata, Grammars and Related Structures (London, ON, 2000)
Shelton, R.O., Soni, R.P.: Chains and fixing blocks in irreducible binary sequences. Discrete Math. 54(1), 93–99 (1985)
Thue, A.: Über unendliche zeichenreihen. Norske Vid. Skrifter I Mat.-Nat. Kl., Christiania 7, 1–22 (1906)
Thue, A.: Über die gegenseitige lage gleicher teile gewisser zeichenreihen. Norske Vid. Skrifter I Mat.-Nat. Kl., Christiania 1, 1–67 (1912)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Hyde, K.K., Kjos-Hanssen, B. (2014). Nondeterministic Automatic Complexity of Almost Square-Free and Strongly Cube-Free Words. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-08783-2_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08782-5
Online ISBN: 978-3-319-08783-2
eBook Packages: Computer ScienceComputer Science (R0)