Skip to main content

An Axiomatization for Cylinder Computation Model

  • Conference paper
Computing and Combinatorics (COCOON 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8591))

Included in the following conference series:

Abstract

To model and verify multi-core parallel programs, the paper proposes an axiom system for Propositional Projection Temporal Logic with Cylinder Computation Model (CCM-PPTL). To do so, the syntax and semantics of CCM-PPTL are presented. Further, based on the logical laws of PPTL, some algebraic laws of sequence expressions and logical laws regarding CCM operators are proved. Moreover, the axiom system of CCM-PPTL is established by extending that of PPTL with some axioms and inference rules of CCM operators. In addition, the soundness and completeness of the system are proved.

The research is supported by the National Program on Key Basic Research Project of China (973 Program) Grant No.2010CB328102, National Natural Science Foundation of China under Grant No. 61133001, 61202038, 61272117, 61272118, 61322202 and 91218301.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development, Heidelberg (2004)

    Google Scholar 

  2. Brock, B., Kaufmann, M., Moore, J.: ACL2 theorems about commercial micro-processors. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 275–293. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  3. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Beijing (2006)

    Google Scholar 

  4. Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection temporal logic with infinite models. Acta Informatica 45, 43–78 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Duan, Z., Tian, C.: A unified model checking approach with projection temporal logic. In: Liu, S., Araki, K., Maibaum, T. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 167–186. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Duan, Z., Zhang, N., Koutny, M.: A complete proof system for propositional projection temporal logic. Theoretical Computer Science 497, 84–107 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duan, Z., Tian, C.: A practical decision procedure for propositional projection temporal logic with infinite models. Theoretical Computer Science (2014) doi:10.1016/j.tcs.2014.02.011

    Google Scholar 

  8. Gordon, M., Melham, T.: Introduction to HOL: A Theorem Proving Environment for Higher Order Logic. Cambridge University Press (1993)

    Google Scholar 

  9. Holzmann, G.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295 (1997)

    Article  MathSciNet  Google Scholar 

  10. McMillan, K.: Symbolic Model Checking: An Approach to the State Explosion Problem, Dordrecht (1993)

    Google Scholar 

  11. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 748–752. Springer, Heidelberg (1992)

    Google Scholar 

  12. Paulson, L.C.: Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  13. Sistla, A.: Theoretical issues in the design and verification of distributed systems, Ph.D. Thesis. Harvard University (1983)

    Google Scholar 

  14. Tian, C., Duan, Z.: Expressiveness of propositional projection temporal logic with star. Theoretical Computer Science 412(18), 1729–1744 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Vardi, M.: A temporal fixpoint calculus. In: POPL 1988, pp. 250–259 (1988)

    Google Scholar 

  16. Wolper, P.: Temporal logic can be more expressive. Information and Control 56, 72–99 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhang, N., Duan, Z., Tian, C.: A cylinder computation model for many-core parallel computing. Theoretical Computer Science 497, 68–83 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, N., Duan, Z., Tian, C. (2014). An Axiomatization for Cylinder Computation Model. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08783-2_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08782-5

  • Online ISBN: 978-3-319-08783-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics