Abstract
This paper presents normal form expressions of Propositional Projection Temporal Logic (PPTL). For doing so, a PPTL formula is represented as the disjunction of formulas in form of \(e_\varepsilon^k=\bigwedge_{0\leq i\leq k\in N_0} \bigcirc^iS_i\wedge \bigcirc^k\varepsilon\) or \(e_\omega^{(k,l)}=\bigwedge_{0\leq i\leq k\in N_0} \bigcirc^iS_i\wedge\bigwedge_{k\leq j\in N_\omega}\bigcirc^j(\bigcirc S_{k+1}\wedge\bigcirc^2 S_{k+2}\wedge \cdots\wedge\bigcirc^l S_{k+l}),1\leq l\in N_0\). Here \(e_\varepsilon^k\) denotes a finite model with length being k while \(e_\omega^{(k,l)}\) indicates an infinite model. We show that any PPTL formula can be expressed as a normal form expression. As a consequence, satisfiability of PPTL formulas can easily be achieved.
The research is supported by the National Program on Key Basic Research Project of China (973 Program) Grant No.2010CB328102, National Natural Science Foundation of China under Grant No. 61133001, 61202038, 61272117, 61272118, 61322202 and 91218301.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-Time Temporal Logic. Journal of the ACM 49(5), 672–713 (2002)
Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. Acta Informatica 20, 207–226 (1983)
Chandra, A., Halpern, J., Meyer, A., Parikh, R.: Equations between regular terms and an application to process logic. In: Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing (STOC 1981), pp. 384–390 (1981)
Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)
Duan, Z.: An Extended Interval Temporal Logic and A Framing Technique for Temporal Logic Programming. PhD thesis. University of Newcastle Upon Tyne (May 1996)
Duan, Z., Koutny, M., Holt, C.: Projection in Temporal Logic Programming. In: Pfenning, F. (ed.) LPAR 1994. LNCS, vol. 822, pp. 333–344. Springer, Heidelberg (1994)
Duan, Z., Tian, C., Zhang, L.: A Decision Procedure for Propositional Projection Temporal Logic with Infinite Models. Acta Informatica 45(1), 43–78 (2008)
Clark, M., Gremberg, O., Peled, A.: Model Checking. The MIT Press (2000)
Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium on Foundations of Computer Science (FOCS 1977), pp. 46–57 (1977)
Finkbeiner, B., Schewe, S.: Coordination Logic. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 305–319. Springer, Heidelberg (2010)
Halpern, J., Manna, Z., Moszkowski, B.: A hardware semantics based on temporal intervals. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 278–291. Springer, Heidelberg (1983)
Emerson, E.A.: Temporal and Modal Logic, Computer Science Department. University of Texas at Austin, USA (1995)
Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Beijing (2006)
Moszkowski, B.: Executing temporal logic programs. Cambridge University Press (1986)
Duan, Z., Tian, C.: A practical decision procedure for propositional projection temporal logic with infinite models. Theoretical Computer Science (2014), doi:10.1016/j.tcs.2014.02.011
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Duan, Z., Tian, C., Zhang, N. (2014). Normal Form Expressions of Propositional Projection Temporal Logic. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds) Computing and Combinatorics. COCOON 2014. Lecture Notes in Computer Science, vol 8591. Springer, Cham. https://doi.org/10.1007/978-3-319-08783-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-08783-2_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08782-5
Online ISBN: 978-3-319-08783-2
eBook Packages: Computer ScienceComputer Science (R0)