Abstract
The centralized gathering and processing of user information made by traditional recommender systems can lead to user information exposure, violating her privacy. Client-side personalization methods have been created as a mean for avoiding privacy risks. Motivated by limiting the exposure of user private information, we explore the use of a client-side hybrid recommender system placed on the online learning setting. We propose a prediction model based on an ensemble blender of an online matrix factorization CF model and a logistic regression model trained on item metadata with a probabilistic feature inclusion strategy. The final prediction is a blend of the two models on a weighted regret approach. We validate our approach with the Movielens 10M dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowl. and Data Eng. 17(6), 734–749 (2005), http://dx.doi.org/10.1109/tkde.2005.99
Amatriain, X., Lathia, N., Pujol, J.M., Kwak, H., Oliver, N.: The wisdom of the few: a collaborative filtering approach based on expert opinions from the web. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2009, pp. 532–539. ACM, New York (2009), http://dx.doi.org/10.1145/1571941.1572033
Bakker, A., Ogston, E., van Steen, M.: Collaborative filtering using random neighbours in peer-to-peer networks. In: CNIKM 2009: Proceeding of the 1st ACM International Workshop on Complex Networks Meet Information & Knowledge Management, pp. 67–75. ACM, New York (2009), http://dx.doi.org/10.1145/1651274.1651288
Bell, R.M., Koren, Y.: Scalable collaborative filtering with jointly derived neighborhood interpolation weights. In: Proceedings of the 2007 Seventh IEEE International Conference on Data Mining, ICDM 2007, pp. 43–52. IEEE Computer Society, Washington, DC (2007), http://dx.doi.org/10.1109/icdm.2007.90
Berkovsky, S., Eytani, Y., Kuflik, T., Ricci, F.: Enhancing privacy and preserving accuracy of a distributed collaborative filtering. In: Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys 2007, pp. 9–16. ACM, New York (2007), http://dx.doi.org/10.1145/1297231.1297234
Bianchi, N.C., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, New York (2006)
Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002), http://dx.doi.org/10.1023/A:1021240730564
Canny, J.: Collaborative filtering with privacy. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy, pp. 45–57 (2002), http://dx.doi.org/10.1109/secpri.2002.1004361
Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011). In: Proceedings of the 5th ACM Conference on Recommender Systems, RecSys 2011. ACM, New York (2011)
Del Prete, L., Capra, L.: diffeRS: A mobile recommender service. In: 2010 Eleventh International Conference on Mobile Data Management (MDM), pp. 21–26. IEEE (May 2010), http://dx.doi.org/10.1109/mdm.2010.22
Dimitropoulos, X., Stoecklin, M., Hurley, P., Kind, A.: The eternal sunshine of the sketch data structure. Comput. Netw. 52(17), 3248–3257 (2008), http://dx.doi.org/10.1016/j.comnet.2008.08.014
Foner, L.N.: Political Artifacts and Personal Privacy: The Yenta Multi-Agent Distributed Matchmaking System. Ph.D. thesis, Program in Media Arts and Sciences, School of Architecture and Planning, Massachusetts Institute of Technology (June 1999)
Funk, S.: Netflix update: Try this at home (2006) http://sifter.org/~simon/journal/20061211.html (accesed online January 2014)
Haddadi, H., Hui, P., Brown, I.: MobiAd: private and scalable mobile advertising. In: Proceedings of the Fifth ACM International Workshop on Mobility in the Evolving Internet Architecture, MobiArch 2010, pp. 33–38. ACM, New York (2010), http://dx.doi.org/10.1145/1859983.1859993
Isaacman, S., Ioannidis, S., Chaintreau, A., Martonosi, M.: Distributed rating prediction in user generated content streams. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys 2011, pp. 69–76. ACM, New York (2011), http://dx.doi.org/10.1145/2043932.2043948
Kermarrec, A.M., Leroy, V., Moin, A., Thraves, C.: Application of random walks to decentralized recommender systems. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 48–63. Springer, Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-17653-1_4
Kim, J.K., Kim, H.K., Cho, Y.H.: A user-oriented contents recommendation system in peer-to-peer architecture. Expert Systems with Applications 34(1), 300–312 (2008), http://dx.doi.org/10.1016/j.eswa.2006.09.034
Kobsa, A.: Privacy-enhanced personalization. Commun. ACM 50(8), 24–33 (2007), http://dx.doi.org/10.1145/1278201.1278202
Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 426–434. ACM, New York (2008), http://dx.doi.org/10.1145/1401890.1401944
Lathia, N., Hailes, S., Capra, L.: Private distributed collaborative filtering using estimated concordance measures. In: Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys 2007, pp. 1–8. ACM, New York (2007), http://dx.doi.org/10.1145/1297231.1297233
McMahan, H.B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., Nie, L., Phillips, T., Davydov, E., Golovin, D., Chikkerur, S., Liu, D., Wattenberg, M., Hrafnkelsson, A.M., Boulos, T., Kubica, J.: Ad click prediction: A view from the trenches. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 1222–1230. ACM, New York (2013), http://dx.doi.org/10.1145/2487575.2488200
Miller, B.N., Konstan, J.A., Riedl, J.: PocketLens: Toward a personal recommender system. ACM Transactions on Information Systems 22(3), 437–476 (2004), http://dx.doi.org/10.1145/1010614.1010618
Schifanella, R., Panisson, A., Gena, C., Ruffo, G.: MobHinter: epidemic collaborative filtering and self-organization in mobile ad-hoc networks. In: RecSys 2008: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 27–34. ACM, New York (2008), http://dx.doi.org/10.1145/1454008.1454014
Tomozei, D.C., Massoulié, L.: Distributed user profiling via spectral methods (September 2011), http://arxiv.org/abs/1109.3318
Tveit, A.: Peer-to-peer based recommendations for mobile commerce. In: WMC 2001: Proceedings of the 1st International Workshop on Mobile Commerce, pp. 26–29. ACM, New York (2001), http://dx.doi.org/10.1145/381461.381466
Xu, W.: Towards optimal one pass large scale learning with averaged stochastic gradient descent (December 2011), http://arxiv.org/abs/1107.2490
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Moreno, A., Castro, H., Riveill, M. (2014). Client-Side Hybrid Rating Prediction for Recommendation. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, GJ. (eds) User Modeling, Adaptation, and Personalization. UMAP 2014. Lecture Notes in Computer Science, vol 8538. Springer, Cham. https://doi.org/10.1007/978-3-319-08786-3_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-08786-3_33
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08785-6
Online ISBN: 978-3-319-08786-3
eBook Packages: Computer ScienceComputer Science (R0)