Abstract
A challenge of Context-Aware Recommender Systems (CARSs) is the cold-start problem, i.e., the usual poor recommendation of new items to new users in new contextual situations. In this research, we aim at solving this problem by developing a switching hybrid CARS, which exploits different context-aware recommendation techniques, each of which has its own strengths and weaknesses, and switches between these techniques depending on the current recommendation situation (i.e., new user, new item and/or new context).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems (TOIS) 23(1), 103–145 (2005)
Baltrunas, L., Amatriain, X.: Towards time-dependant recommendation based on implicit feedback. In: Workshop on Context-Aware Recommender Systems, (CARS 2009) (2009)
Baltrunas, L., Ludwig, B., Ricci, F.: Matrix factorization techniques for context aware recommendation. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 301–304. ACM (2011)
Baltrunas, L., Ricci, F.: Experimental evaluation of context-dependent collaborative filtering using item splitting. In: User Modeling and User-Adapted Interaction (to appear, 2014)
Billsus, D., Pazzani, M.J.: User modeling for adaptive news access. User Modeling and User-Adapted Interaction 10(2-3), 147–180 (2000)
Braunhofer, M., Elahi, M., Ricci, F., Schievenin, T.: Context-aware points of interest suggestion with dynamic weather data management. In: Information and Communication Technologies in Tourism 2014, pp. 87–100. Springer (2013)
Codina, V., Ricci, F., Ceccaroni, L.: Local context modeling with semantic pre-filtering. In: Proceedings of the Seventh ACM Conference on Recommender Systems, pp. 363–366. ACM (2013)
Ekstrand, M., Riedl, J.: When recommenders fail: predicting recommender failure for algorithm selection and combination. In: Proceedings of the Sixth ACM Conference on Recommender Systems, pp. 233–236. ACM (2012)
Elahi, M., Braunhofer, M., Ricci, F., Tkalcic, M.: Personality-based active learning for collaborative filtering recommender systems. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS, vol. 8249, pp. 360–371. Springer, Heidelberg (2013)
Enrich, M., Braunhofer, M., Ricci, F.: Cold-start management with cross-domain collaborative filtering and tags. In: Huemer, C., Lops, P. (eds.) EC-Web 2013. LNBIP, vol. 152, pp. 101–112. Springer, Heidelberg (2013)
Koren, Y., Bell, R.: Advances in collaborative filtering. In: Recommender Systems Handbook, pp. 145–186. Springer (2011)
Košir, A., Odic, A., Kunaver, M., Tkalcic, M., Tasic, J.F.: Database for contextual personalization. Elektrotehniski Vestnik 78(5), 270–274 (2011)
Lam, X.N., Vu, T., Le, T.D., Duong, A.D.: Addressing cold-start problem in recommendation systems. In: Proceedings of the 2nd International Conference on Ubiquitous Information Management and Communication, ICUIMC 2008, pp. 208–211. ACM, New York (2008)
Lee, J.S., Lee, J.C.: Context awareness by case-based reasoning in a music recommendation system. In: Ichikawa, H., Cho, W.-D., Satoh, I., Youn, H.Y. (eds.) UCS 2007. LNCS, vol. 4836, pp. 45–58. Springer, Heidelberg (2007)
Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Contextual evsm: A content-based context-aware recommendation framework based on distributional semantics. In: Huemer, C., Lops, P. (eds.) EC-Web 2013. LNBIP, vol. 152, pp. 125–136. Springer, Heidelberg (2013)
Park, S.-T., Chu, W.: Pairwise preference regression for cold-start recommendation. In: Proceedings of the Third ACM Conference on Recommender Systems, pp. 21–28. ACM (2009)
Rendle, S., Schmidt-Thieme, L.: Online-updating regularized kernel matrix factorization models for large-scale recommender systems. In: Proceedings of the 2008 ACM Conference on Recommender Systems, pp. 251–258. ACM (2008)
Woerndl, W., Brocco, M., Eigner, R.: Context-aware recommender systems in mobile scenarios. International Journal of Information Technology and Web Engineering (IJITWE) 4(1), 67–85 (2009)
Zheng, Y., Burke, R., Mobasher, B.: Recommendation with differential context weighting. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013. LNCS, vol. 7899, pp. 152–164. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Braunhofer, M. (2014). Hybrid Solution of the Cold-Start Problem in Context-Aware Recommender Systems. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, GJ. (eds) User Modeling, Adaptation, and Personalization. UMAP 2014. Lecture Notes in Computer Science, vol 8538. Springer, Cham. https://doi.org/10.1007/978-3-319-08786-3_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-08786-3_44
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08785-6
Online ISBN: 978-3-319-08786-3
eBook Packages: Computer ScienceComputer Science (R0)