Skip to main content

Geometric Surface Deformation Based on Trajectories: A New Approach

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8563))

Included in the following conference series:

  • 929 Accesses

Abstract

This paper describes the development of a free-form deformation model (FFD) which is an extension of the Scodef model of geometric constraint-based deformations. The deformation is applied to a point over the surface and it is restricted to a region which is limited by a closed B-Spline curve acting as a profile. The main difference from the original model is that in the new one, the conditions to define restrictions with non rectilinear trajectories have been established. These conditions are represented by 4D B-Spline curves. With the proposed solution, the deformed surface is adjusted precisely as described by both B-Spline curves. The model has been called N-Scodef.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bechmann, D., Gerber, D.: Arbitrary shaped deformations with DOGME. The Visual Computer 19, 175–186 (2003), http://dx.doi.org/10.1007/s00371-002-0191-x176 , 10.1007/s00371-002-0191-x176

  2. Borrel, P., Bechmann, D.: Deformation of n–dimensional objects. In: Proceedings of the First ACM Symposium on Solid Modeling Foundations and CAD/CAM Applications, SMA 1991, pp. 351–369. ACM, New York (1991)

    Chapter  Google Scholar 

  3. Borrel, P., Rappoport, A.: Simple constrained deformations for geometric modeling and interactive design. ACM Transactions on Graphics 13(2), 137–155 (1994)

    Article  MATH  Google Scholar 

  4. Clapés, M., González-Hidalgo, M., Mir-Torres, A., Palmer-Rodríguez, P.A.: Interactive constrained deformations of NURBS surfaces: N-SCODEF. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2008. LNCS, vol. 5098, pp. 359–369. Springer, Heidelberg (2008), http://www.springerlink.com/content/755x0m42567u22k0/

    Chapter  Google Scholar 

  5. Jin, X., Li, Y., Peng, Q.: General constrained deformations based on generalized metaballs. Computer & Graphics 24, 200 (2000)

    Google Scholar 

  6. La Gréca, R.: Approche déclarative de la modélisation de surfaces. Ph.D. thesis. Université de la Méditerranée Aix–Marseille II (2005)

    Google Scholar 

  7. La Gréca, R., Raffin, R., Gesquière, G.: Punctual constraint resolution and deformation path on NURBS. In: International Conference on Computer Graphics and Vision, Graphicon 2007 (2007), http://www.graphicon.ru/2007/proceedings/Papers/Paper_38.pdf

  8. Lanquetin, S., Raffin, R., Neveu, M.: Generalized SCODEF deformations on subdivision surfaces. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2006. LNCS, vol. 4069, pp. 132–142. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Piegl, L., Tiller, W.: The NURBS Book, Monographs in visual communications, 2nd edn. Springer (1997)

    Google Scholar 

  10. Brecher, C., Lindemann, D., Merz, M., Wenzel, C., Preuß, W.: Free form deformations or deformations non-constrained by geometries or topologies. In: Brinksmeier, E., Riemer, O., Gläbe, R. (eds.) Fabrication of Complex Optical Components. Lecture Notes in Computational Vision and Biomechanics, vol. 7, pp. 49–74. Springer, Netherlands (2013), http://dx.doi.org/10.1007/978-94-007-5446-1_2

    Google Scholar 

  11. Raffin, R., Gesquière, G., La Gréca, R.: Déformations de modèles géométriques. Tech. Rep. LSIS.RR.2007.001, LSIS (2007)

    Google Scholar 

  12. Raffin, R., Neveu, M., Derdouri, B.: Constrained deformation for geometric modeling and object reconstruction. In: WSCG 1998 – International Conference in Central Europe on Computer Graphics, Visualization 1998, vol. 2, pp. 299–306 (1998)

    Google Scholar 

  13. Raffin, R., Neveu, M., Jaar, F.: Extended constrained deformations: A new sculpturing tool. In: Proceedings of International Conference on Shape Modeling International 1999, pp. 219–224 (March 1999)

    Google Scholar 

  14. Raffin, R., Neveu, M., Jaar, F.: Curvilinear displacement of free–form–based deformation. The Visual Computer 16, 38–46 (2000), http://dx.doi.org/10.1007/s003710050005 , 10.1007/s003710050005

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

González-Hidalgo, M., Mir-Torres, A., Palmer-Rodríguez, P. (2014). Geometric Surface Deformation Based on Trajectories: A New Approach. In: Perales, F.J., Santos-Victor, J. (eds) Articulated Motion and Deformable Objects. AMDO 2014. Lecture Notes in Computer Science, vol 8563. Springer, Cham. https://doi.org/10.1007/978-3-319-08849-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08849-5_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08848-8

  • Online ISBN: 978-3-319-08849-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics