Skip to main content

Abstract

We investigate whether pairwise dependence properties related to all the bivariate margins of a trivariate copula imply the corresponding trivariate dependence property. The main finding is that, in general, information about the pairwise dependence is not sufficient to infer some aspects of global dependence. In essence, dependence is a multi-facet property that cannot be easily reduced to simplest cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chakak, A., Koehler, K.J.: A strategy for constructing multivariate distributions. Comm. Statist. Simulation Comput. 24(3), 537–550 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Deheuvels, P.: Indépendance multivariée partielle et inégalités de Fréchet. In: Studies in Probability and Related Topics, Nagard, Rome, pp. 145–155 (1983)

    Google Scholar 

  3. Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., Vyncke, D.: The concept of comonotonicity in actuarial science and finance: theory. Insurance Math. Econom. 31(1), 3–33 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Durante, F., Klement, E., Quesada-Molina, J.J.: Bounds for trivariate copulas with given bivariate marginals. J. Inequal. Appl. 2008, 1–9 (2008), article ID 161537

    Google Scholar 

  5. Durante, F., Sempi, C.: Copula theory: an introduction. In: Jaworski, P., Durante, F., Härdle, W., Rychlik, T. (eds.) Copula Theory and its Applications. Lecture Notes in Statistics - Proceedings, vol. 198, pp. 3–31. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Genest, C., Nešlehová, J.: A primer on copulas for count data. Astin Bull. 37(2), 475–515 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hofert, M.: A stochastic representation and sampling algorithm for nested Archimedean copulas. J. Stat. Comput. Simul. 82(9), 1239–1255 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hofert, M., Scherer, M.: CDO pricing with nested Archimedean copulas. Quant. Finance 11(5), 775–787 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jaworski, P., Durante, F., Härdle, W.K. (eds.): Copulae in Mathematical and Quantitative Finance. Lecture Notes in Statistics - Proceedings, vol. 213. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  10. Jaworski, P., Durante, F., Härdle, W.K., Rychlik, T. (eds.): Copula Theory and its Applications. Lecture Notes in Statistics - Proceedings, vol. 198. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  11. Joe, H.: Multivariate models and dependence concepts. Monographs on Statistics and Applied Probability, vol. 73. Chapman & Hall, London (1997)

    Book  MATH  Google Scholar 

  12. Loisel, S.: A trivariate non-Gaussian copula having 2-dimensional Gaussian copulas as margins. Tech. rep., Cahiers de recherche de l’Isfa (2009)

    Google Scholar 

  13. Mai, J.F., Scherer, M.: What makes dependence modeling challenging? Pitfalls and ways to circumvent them. Stat. Risk. Model. 30(4), 287–306 (2013)

    MATH  MathSciNet  Google Scholar 

  14. Nelsen, R.B.: Nonparametric measures of multivariate association. In: Distributions with Fixed Marginals and Related Topics (Seattle, WA, 1993). IMS Lecture Notes Monogr. Ser., vol. 28, pp. 223–232, Inst. Math. Statist., Hayward, CA (1996)

    Google Scholar 

  15. Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer Series in Statistics. Springer, New York (2006)

    MATH  Google Scholar 

  16. Nelsen, R.B., Úbeda-Flores, M.: How close are pairwise and mutual independence? Statist. Probab. Lett. 82(10), 1823–1828 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Okhrin, O., Okhrin, Y., Schmid, W.: On the structure and estimation of hierarchical Archimedean copulas. J. Econometrics 173(2), 189–204 (2013)

    Article  MathSciNet  Google Scholar 

  18. Quesada-Molina, J.J., Rodríguez-Lallena, J.A.: Some advances in the study of the compatibility of three bivariate copulas. J. Ital. Stat. Soc. 3(3), 397–417 (1994)

    Article  MATH  Google Scholar 

  19. Rodríguez-Lallena, J.A., Úbeda-Flores, M.: Compatibility of three bivariate quasi-copulas: applications to copulas. In: Soft Methodology and Random Information Systems. Adv. Soft Comput., vol. 26, pp. 173–180. Springer, Berlin (2004)

    Chapter  Google Scholar 

  20. Salvadori, G., De Michele, C.: Statistical characterization of temporal structure of storms. Adv. Water Resour. 29(6), 827–842 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Durante, F., Nelsen, R.B., Quesada-Molina, J.J., Úbeda-Flores, M. (2014). Pairwise and Global Dependence in Trivariate Copula Models. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2014. Communications in Computer and Information Science, vol 444. Springer, Cham. https://doi.org/10.1007/978-3-319-08852-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08852-5_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08851-8

  • Online ISBN: 978-3-319-08852-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics