Abstract
We investigate the associativity property for varying-arity aggregation functions and introduce the more general property of preassociativity, a natural extension of associativity. We discuss this new property and describe certain classes of preassociative functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aczél, J.: Sur les opérations définies pour nombres réels. Bull. Soc. Math. France 76, 59–64 (1949)
Aczél, J.: The associativity equation re-revisited. In: Erikson, G., Zhai, Y. (eds.) Bayesian Inference and Maximum Entropy Methods in Science and Engineering, pp. 195–203, American Institute of Physics, Melville-New York (2004)
Alsina, C., Frank, M.J., Schweizer, B.: Associative functions: triangular norms and copulas. World Scientific, London (2006)
Bacchelli, B.: Representation of continuous associative functions. Stochastica 10, 13–28 (1986)
Beliakov, G., Pradera, A., Calvo, T.: Aggregation functions: a guide for practitioners. STUDFUZZ, vol. 221. Springer, Heidelberg (2007)
Calvo, T., Kolesárová, A., KomornÃková, M., Mesiar, R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators. New Trends and Applications. STUDFUZZ, vol. 97, pp. 3–104. Physica-Verlag, Heidelberg (2002)
Couceiro, M., Marichal, J.-L.: Associative polynomial functions over bounded distributive lattices. Order 28, 1–8 (2011)
Couceiro, M., Marichal, J.-L.: Aczélian n-ary semigroups. Semigroup Forum 85, 81–90 (2012)
Craigen, R., Páles, Z.: The associativity equation revisited. Aeq. Math. 37, 306–312 (1989)
Fodor, J., Roubens, M.: Fuzzy preference modelling and multicriteria decision support. In: Theory and Decision Library. Series D: System Theory, Knowledge Engineering and Problem Solving. Kluwer Academic Publisher, Dordrecht (1994)
Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation functions. In: Encyclopedia of Mathematics and its Applications, vol. 127, Cambridge University Press, Cambridge (2009)
Klement, E.P., Mesiar, R. (eds.): Logical, algebraic, analytic, and probabilistic aspects of triangular norms. Elsevier Science, Amsterdam (2005)
Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. In: Trends in Logic - Studia Logica Library, vol. 8. Kluwer Academic, Dordrecht (2000)
Ling, C.H.: Representation of associative functions. Publ. Math. Debrecen 12, 189–212 (1965)
Marichal, J.-L.: Aggregation operators for multicriteria decision aid. PhD thesis, Department of Mathematics, University of Liège, Liège, Belgium (1998)
Marichal, J.-L.: On the associativity functional equation. Fuzzy Sets and Systems 114, 381–389 (2000)
Schweizer, B., Sklar, A.: Probabilistic metric spaces. North-Holland Series in Probability and Applied Mathematics. North-Holland Publishing Co., New York (1983) (New edition in: Dover Publications, New York, 2005)
Yager, R.R.: Quasi-associative operations in the combination of evidence. Kybernetes 16, 37–41 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Marichal, JL., Teheux, B. (2014). Preassociative Aggregation Functions. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2014. Communications in Computer and Information Science, vol 444. Springer, Cham. https://doi.org/10.1007/978-3-319-08852-5_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-08852-5_34
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08851-8
Online ISBN: 978-3-319-08852-5
eBook Packages: Computer ScienceComputer Science (R0)