Skip to main content

Approximate Inference in Directed Evidential Networks with Conditional Belief Functions Using the Monte Carlo Algorithm

  • Conference paper
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2014)

Abstract

Evidential networks are frameworks of interest commonly used to represent uncertainty and to reason within the belief function formalism. Despite their success in handling different uncertain situations, the exponential computational complexity which occurs when carrying out the exact inference in these networks makes the use of such models in complex problems difficult. Therefore, with real applications reaching the size of several tens or hundreds of variables, it becomes important to address the serious problem of the feasibility of the exact evidential inference. This paper investigates the issue of applying an approximate algorithm to the belief function propagation in evidential networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnett, J.A.: Computational Methods for a Mathematical Theory of Evidence. In: IJCAI, pp. 868–875 (1981)

    Google Scholar 

  2. Ben Yaghlane, B., Mellouli, K.: Inference in Directed Evidential Networks Based on the Transferable Belief Model. IJAR 48(2), 399–418 (2008)

    MATH  MathSciNet  Google Scholar 

  3. Benavoli, A., Ristic, B., Farina, A., Oxenham, M., Chisci, L.: Threat Assessment Using Evidential Networks. Information Fusion, 1–8 (2007)

    Google Scholar 

  4. Borgelt, C., Gebhardt, J., Kruse, R.: Possibilistic graphical models. In: International School for the Synthesis of Expert Knowledge, ISSEK (1998)

    Google Scholar 

  5. Burger, T., Destercke, D.: How to randomly generate mass functions. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 21(5), 645–673 (2013)

    Article  Google Scholar 

  6. Cozman, F.G.: Credal networks. Artif. Intell. 120(2), 199–233 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gordon, G., Shortliffe, E.H.: A Method for Managing Evidential Reasoning in a Hierarchical Hypothesis Space. Artif. Intell. 26(3), 323–357 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jousselme, A.L., Grenier, D., Bossé, E.: A new distance between two bodies of evidence. Information Fusion 2, 91–101 (2001)

    Article  Google Scholar 

  9. Kohlas, P., Monney, A.: A Mathematical Theory of Hints. An Approach to the Dempster Shafer Theory of Evidence. Lecture Notes in Economics and Mathematical Systems. Springer (1995)

    Google Scholar 

  10. Laâmari, W., Ben Yaghlane, B., Simon, C.: Comparing Evidential Graphical Models for Imprecise Reliability. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 191–204. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Murphy, K.: Probabilistic Graphical Models. Michael Jordan (2002)

    Google Scholar 

  12. Orponen, P.: Dempster’s rule is #P-complete. Artif. Intell. 44, 245–253 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann (1988)

    Google Scholar 

  14. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  15. Shafer, G., Logan, R.: Implementing Dempster’s Rule for Hierarchical Evidence. Artifi. Intell. 33, 271–298 (1978)

    Article  MathSciNet  Google Scholar 

  16. Shenoy, P.P.: Binary Join Trees for Computing Marginals in the Shenoy-Shafer Architecture. Int. J. Approx. Reasoning 17(2-3), 239–263 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shafer, G., Shenoy, P.P., Mellouli, K.: Propagating Belief Functions in Qualitative Markov Trees. I. J. Approx. Reasoning 1, 349–400 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Simon, C., Weber, P.: Evidential Networks for Reliability Analysis and Performance Evaluation of Systems With Imprecise Knowledge. IEEE Transactions on Reliability 58(1), 69–87 (2009)

    Article  Google Scholar 

  19. Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66, 191–234 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Villemeur, A.: Reliability, availability, maintainability and safety assessment: methods and techniques. John Wiley and Sons Inc. (1992)

    Google Scholar 

  21. Wilson, N.: Justification, Computational Efficiency and Generalisation of the Dempster-Shafer Theory, Research Report 15, Oxford Polytechnic, Artif. Intell. (1989)

    Google Scholar 

  22. Xu, H., Smets, P.: Evidential Reasoning with Conditional Belief Functions. In: Heckerman, D., Poole, D., Lopez De Mantaras, R. (eds.) UAI 1994, pp. 598–606. Morgan Kaufmann, San Mateo (1994)

    Google Scholar 

  23. Yang, J., Huang, H.Z., Liu, Y.: Evidential networks for fault tree analysis with imprecise knowledge. Int. J. of Turbo & Jet Engines, 111–122 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Laâmari, W., Ben Hariz, N., Ben Yaghlane, B. (2014). Approximate Inference in Directed Evidential Networks with Conditional Belief Functions Using the Monte Carlo Algorithm. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2014. Communications in Computer and Information Science, vol 444. Springer, Cham. https://doi.org/10.1007/978-3-319-08852-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08852-5_50

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08851-8

  • Online ISBN: 978-3-319-08852-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics