
Applicative May- and Should-Simulation in the Call-by-Value
Lambda Calculus with AMB

Manfred Schmidt-Schauß and David Sabel

Goethe University, Frankfurt, Germany
{schauss,sabel}@ki.informatik.uni-frankfurt.de

Technical Report Frank-54

Research group for Artificial Intelligence and Software Technology
Institut für Informatik,

Fachbereich Informatik und Mathematik,
Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany

April 25, 2014

Abstract. Motivated by the question whether sound and expressive applicative similarities for
program calculi with should-convergence exist, this paper investigates expressive applicative simi-
larities for the untyped call-by-value lambda-calculus extended with McCarthy’s ambiguous choice
operator amb. Soundness of the applicative similarities w.r.t. contextual equivalence based on may-
and should-convergence is proved by adapting Howe’s method to should-convergence. As usual for
nondeterministic calculi, similarity is not complete w.r.t. contextual equivalence which requires
a rather complex counter example as a witness. Also the call-by-value lambda-calculus with the
weaker nondeterministic construct erratic choice is analyzed and sound applicative similarities are
provided. This justifies the expectation that also for more expressive and call-by-need higher-order
calculi there are sound and powerful similarities for should-convergence.

1 Introduction

Our motivation for investigating program equivalences is to show correctness of program op-
timizations, more generally of program transformations, and also to get more knowledge of
program semantics, since the induced equivalence classes can be viewed as the semantics of the
program.

A foundational notion of equality of higher-order programs is contextual equivalence, which
holds for two expressions s, t, if the evaluation of program P [s] (may-)terminates successfully if
and only if the evaluation of program P [t] (may-)terminates successfully, for all programs P [·].
Here we denote by P [t] the program P , where the expression s is replaced by t. For concurrent
and/or nondeterministic languages, the situation is a bit more complex, since contextual equiv-
alence based only on successful may-termination is too weak, since it ignores paths that lead
to errors, nontermination or deadlocks. There are proposals to remedy this weakness by adding
another test: either a must-convergence test, where the test is that every possible evaluation
is finite; another proposal is should-convergence, where the test only requests that for every
(finite) reduction sequence there is always a possible may-termination. Contextual equivalence
based on the combination of may- and should-convergence has been used for several extended,
nondeterministic lambda calculi e.g. [3, 24], for process calculi and algebras [9, 5, 23], and also for
concurrent lambda calculi that model real concurrent programming languages e.g. Concurrent
Haskell, STM Haskell and Alice ML (see [20, 25–27]).

Although contextual equivalence provides a natural notion of program equivalence, proving
expressions to be contextually equivalent is usually hard, since all program contexts need to

2 Manfred Schmidt-Schauß and David Sabel

be taken into account. Establishing equivalence proofs is often easier using an applicative (bi)-
similarity. For may-convergence, applicative (bi)similarity is the coinductive test consisting of
evaluating the expressions to abstractions, applying them to arguments, and showing that the
resulting expressions are again applicative (bi)similar.

It is known that applicative (bi)similarities in many (usually deterministic) cases are sound
and complete for contextual equivalence (see e.g. [1, 7]). On the other hand, there are also some
negative results when more expressive and complex languages are considered, e.g. applicative
similarity (for may-convergence) is unsound in impure lambda calculi with direct storage modi-
fications [17, 29] and also in nondeterministic languages with recursive bindings [28].

While there are several approaches for an applicative similarity for must-convergence (e.g. [21,
13, 12, 10]), to the best of our knowledge, no notion of applicative similarity for should-
convergence has been studied. So in this paper we will make a first step to close this gap
and investigate a notion of applicative similarity for should-convergence.

We choose a rather small calculus for our foundational investigation to not get sidetracked
by the syntactic complexity of the calculus. Hence, we investigate the untyped call-by-value
lambda calculus extended by the nondeterministic primitive amb. We choose McCarthy’s amb-
operator[18], since its implementation requires concurrency: amb s t can be implemented by
executing two concurrent threads – one evaluates s and the other one evaluates t, and the first
result obtained from one of the two threads is used as the result for amb s t. Clearly, if both
threads return a result, then the program is free to choose one of them. In a concrete imple-
mentation this will depend on the scheduling of the threads. Semantically, any (fair) scheduling
must be allowed to ensure the correct implementation of amb. The operator amb is (locally)
bottom-avoiding, i.e. speaking denotationally where ⊥ represents diverging programs, amb ⊥ s
and amb s ⊥ are equal to s, and for the case s 6= ⊥ 6= t the amb-operator may freely choose
between s and t, i.e. then (amb s t) ∈ {s, t}.

The amb-operator is also very expressive compared to other nondeterministic operators,
e.g. using amb one can encode an erratic choice which chooses arbitrarily between its arguments,
a demonic choice which is the strict variant of erratic choice and requires termination of both of
its arguments before choosing between the arguments, and a parallel or. Also semantically, amb is
challenging, since usual semantic properties do not hold for calculi with amb, e.g. nonterminating
programs are not least elements w.r.t. the ordering of contextual semantics. A further reason
for analyzing the calculus with amb is that it is being studied for several decades (e.g. [18, 2, 19,
13, 11, 10, 14]) and for the contextual equivalence with may- and must-convergence it is a long
standing open question whether a sound applicative similarity exists (see e.g.[10]). A negative
result is provided by [14], however it requires a typed calculus and the given counterexample is
no longer valid if should-convergence is used instead of must-convergence.

Results. Our main theorem (Main Theorem 3.6) states that an expressive applicative similar-
ity is sound for a contextual equivalence defined as a conjunction of may- and should-contextual
equivalence, in the untyped call-by-value calculus with amb. The proof is an adaption of Howe’s
method [7, 8, 22] to should-convergence. We also show that the applicative similarity is not com-
plete w.r.t. contextual equivalence by providing a counter-example. We also explore and discuss
other possible definitions of applicative similarity and compare them to our definition. Finally,
we consider the call-by-value lambda calculus with erratic choice (which is weaker than amb)
and show that the coarser applicative similarity for may- and should-convergence (called convex
similarity) is sound in the calculus with choice, but unsound in the calculus with amb.

Outline. In Sect. 2 we introduce the call-by-value lambda-calculus with amb, and in Sect. 3 we
define the applicative similarities for may- and should-convergence, state our main theorem, and
discuss other definition of applicative similarity. The proof of the main theorem is accomplished
in Sect. 4. In Sect. 5 we consider the call-by-value calculus with erratic choice and show soundness
of applicative similarity for this calculus. We conclude in Sect. 6.

Simulation in the Call-by-Value Lambda-Calculus with AMB 3

Variables: x, xi ∈ V
Expressions: s, t ∈ ExprLCA ::= x | λx.s | (s t) | (amb s t)
Values: v, vi ∈ Val ::= λx.s
Contexts: C,Ci ∈ CLCA ::= [·] | λx.C | (C s) | (s C) | (amb C s) | (amb s C)
Evaluation contexts: E ∈ E ::= [·] | (E s) | (v E) | (amb E s) | (amb s E)
Reduction rules:

(cbvbeta) ((λx.s) (λy.t)) → s[(λy.t)/x] where FV (λy.t) ∩ BV (λx.s) = ∅
(ambl) (amb (λx.s) t) → (λx.s)
(ambr) (amb t (λx.s)) → (λx.s)

Call-by-value reduction:
s→ t, by (cbvbeta), (ambl) or (ambr) E ∈ E

E[s]
LCA−−−→ E[t]

Fig. 1. Syntax and Operational Semantics of LCA

2 Call-by-Value AMB Lambda-Calculus

We introduce the call-by-value lambda-calculus with the amb-operator, and define the contextual
semantics based on may- and should-convergence.

Let V be an infinite set of variables. The syntax of expressions and values of the calculus
LCA is shown in Fig. 1. In λx.s variable x becomes bound in s. With FV (s) (BV (s), resp.)
we denote the set of free (bound resp.) variables of expression s, which are defined as usual. If
FV (s) = ∅ then s is called closed, otherwise s is an open expression. Note that values v ∈ Val
include all abstractions (also open ones). We assume the distinct variable convention to hold,
i.e. bound names are pairwise distinct and BV (s) ∩ FV (s) = ∅. This convention can always be
fulfilled by applying α-renamings. Contexts C,Ci ∈ CLCA (see Fig. 1) are expressions where one
subexpression is replaced by a hole, denoted with [·]. With C[s] we denote the expression where
in C the hole is replaced by expression s.

The reduction rules (cbvbeta), (ambl) and (ambr) and the call-by-value small-step reduction
LCA−−−→ are defined in Fig. 1. Call-by-value reduction applies the reduction rules inside call-by-value

evaluation contexts E ∈ E. With
LCA,∗−−−−→ we denote the reflexive-transitive closure of

LCA−−−→. The
reduction is non-deterministic, i.e. the arguments of amb can be reduced non-deterministically
in any sequence, and if one argument is already evaluated to an abstraction, then it is also
permitted to project the amb-expression to this argument.

Definition 2.1 (May- and Should-Convergence). If s
LCA,∗−−−−→ λx.s′ for some abstraction

λx.s′, then we say s may-converges and write s↓, otherwise s is must-divergent, denoted as s⇑.

If s
LCA,∗−−−−→ λx.s′ then we also write s↓λx.s′.

If for all s′ with s
LCA,∗−−−−→ s′, also s′↓ holds, then we say s should-converges and write s⇓,

and otherwise s may-diverges (denoted by s↑). Note that s↑ iff there is an expression s′, such

that s′⇑ and s
LCA,∗−−−−→ s′.

Definition 2.2 (Contextual Preorder & Equivalence). For ξ ∈ {↓,⇓, ↑,⇑} the contextual
ξ-preorder ≤ξ and contextual ξ-equivalence are defined as

– s ≤ξ t iff for all C ∈ CLCA s.t. C[s] and C[t] are closed: C[s]ξ =⇒ C[t]ξ.
– s ∼ξ t iff s ≤ξ t and t ≤ξ s.

Contextual preorder ≤LCA is defined by s ≤LCA t, iff s ≤↓ t and s ≤⇓ t; and contextual
equivalence ∼LCA is defined by s ∼LCA t, iff s ∼↓ t and s ∼⇓ t.

Some abbreviations for expressions that we will use in later examples are Ω =
(λx.(x x)) (λx.(x x)), Id = λx .x , True = λx .λy .x , False = λx .λy .y , Y =
λf.(λx.f λz.(x x z)) (λx.f λz.(x x z)), Top = (Y True). We will also write λx1, x2, . . . , xn.s
abbreviating nested abstractions λx1.λx2. . . . λxn.s.

4 Manfred Schmidt-Schauß and David Sabel

The given operational semantics does not take fairness into account, e.g. call-by-value re-

duction may reduce the left argument in amb Ω Id
LCA−−−→ amb Ω Id infinitely often ignoring

the right argument Id . So the bottom-avoidance of the amb-operator is not fully captured by
our operational semantics. However, the convergence predicates may- and should-convergence
and thus also the contextual semantics capture this behavior, i.e. if we restrict the allowed re-
duction sequences to fair ones (i.e. no redex is ignored infinitely often in an infinite reduction
sequence), then the corresponding predicates for may- and should-convergence are identical to
our predicates, i.e. should-convergence already has this kind of fairness built-in (see e.g. [24]).
So our operational semantics is a simplification (which greatly simplifies reasoning), but all of
our results also hold for an operational semantics which includes the fairness requirement.

The amb-operator is more expressive than a lot of other nondeterministic operators. E.g., amb
can encode erratic choice which freely chooses between its two arguments and thus we will use
choice s t as an abbreviation for (amb (λx.s) (λx.t)) Id , where x is a fresh variable. Also a demonic
choice operator dchoice is expressible, which requires termination of both of its arguments before
choosing between them: dchoice s t := (amb (λx , y .x) (λx , y .y)) s t .

Unlike calculi with erratic or demonic choice, in LCA the inequation s ≤⇓ t implies t ≤↓ s,
since there is the so-called “bottom-avoiding context” which can be used to test for must-
divergence using the should-convergence test. This also implies that contextual equivalence and
∼⇓ coincide.

Proposition 2.3. ≤⇓ ⊆ ≤⇑ and thus ≤LCA ⊆ ∼↓ as well as ∼LCA = ∼⇓.

Proof. For the context BA := (amb ((λx .λy .Ω) [·]) Id) Id and any LCA-expression s the equiv-
alence BA[s]⇓ ⇐⇒ s⇑ holds: if s⇑, then the amb-expression can only evaluate to its right
argument Id , and thus BA[s] is should-convergent in this case. If s↓, then the reduction se-

quence BA[s]
LCA,∗−−−−→ (amb (λy .Ω) Id) Id

LCA,∗−−−−→ Ω shows BA[s]↑. Now let s ≤⇓ t and assume
s 6≤⇑ t. Then there exists a context C s.t. C[s], C[t] are closed and C[s]⇑ but C[t]↓. Then
BA[C [s]],BA[C [t]] are closed and BA[C [s]]⇓ and BA[C [t]]↑, which contradicts s ≤⇓ t. Thus our
assumption was wrong and s ≤⇑ t must hold. ut

3 Applicative Similarities for LCA

In this section we define applicative similarities for may- and should-convergence in LCA. Then
we present our main theorem: the applicative similarities are sound for contextual preorder. We
also discuss our definitions and also consider and analyze alternative definitions of similarity.
Due to its complexity, the proof of the main theorem is not included in this section, but given in
the subsequent section. We use several binary relations on expressions. Sometimes the relations
are defined on closed expressions only, and thus we deal with their extensions to open expressions
and vice versa with the restrictions to closed expressions:

Definition 3.1. For a binary relation η on closed LCA-expressions, ηo is the open value-
extension on LCA: For (open) LCA-expressions s1, s2, the relation s1 η

o s2 holds, if for all
value-substitutions σ, i.e. that replace the free variables in s1, s2 by closed abstractions, and
where σ(s1), σ(s2) are closed, the relation σ(s1) η σ(s2) holds. Conversely, for a binary relation
µ on open expressions, (µ)c is its restriction to closed expressions.

Lemma 3.2. Let η be a binary relation on closed expressions, and µ be a binary relation on open
expressions. Then 1. ((η)o)c = η, and 2. s ηo t implies σ(s) ηo σ(t) for any value-substitution
σ, and 3. µ ⊆ ((µ)c)o is equivalent to: ∀s, t and all closing value-substitutions σ: s µ t =⇒
σ(s) µ σ(t)

Simulation in the Call-by-Value Lambda-Calculus with AMB 5

3.1 Applicative Similarities for May- and Should-Convergence

We define applicative similarity 4↓ for may-convergence and applicative similarity 4↑ for should-
convergence (where in fact its negation may-divergence is used). Also mutual similarities and
applicative bisimilarities are defined.

Definition 3.3. We will define operators Fα on binary relations of closed expressions, where
α is a name or a mark. The corresponding similarity, denoted as 4α is the greatest fixpoint
gfp(Fα) of Fα, and the mutual similarity is ≈α := 4α ∩ <α. If Fα is symmetric, then it is a
bisimilarity, denoted as 'α.

We always define monotone operators Fα, hence the greatest fixpoints exist. For closed s, t
and a binary relation η on closed expressions let LR(s, t, η) be the condition: s↓λx.s′ =⇒(
∃λx.t′ with t↓λx.t′ and s′ ηo t′

)
.

Definition 3.4 (Similarities for LCA). On closed expressions we define:

May-Similarity in LCA, 4↓ := gfp(F↓): Let s F↓(η) t hold iff LR(s, t, η).

Should-Similarity in LCA, 4↑ := gfp(F↑):
Let s F↑(η) t hold iff s↑ =⇒ t↑, t 4↓ s and LR(s, t, η).

Should-Bisimilarity in LCA, '⇓ := gfp(F⇓):
Let s F⇓(η) t hold iff s↑ ⇐⇒ t↑, LR(s, t, η), and LR(t, s, η).

Since gfp(Fα) :=
⋃
{η | η ⊆ Fα(η)} by the Knaster-Tarski-Theorem on fixpoints, the follow-

ing principle of coinduction holds (see e.g.[4, 6]):

Proposition 3.5 (Coinduction). If a relation η on closed expressions is Fα-dense, i.e. η ⊆
Fα(η), then η ⊆ 4α, and also (η)o ⊆ (4α)o holds.

We now present our main theorem, i.e. soundness of may- and should-similarity and also
should-bisimilarity. Here we state it for the open extensions of the relations, however it also
holds for the relations on closed expressions and the restriction of contextual preorders and
equivalence on closed expressions.

Main Theorem 3.6 The similarities 4o
↓ and 4o

↑ are precongruences, the mutual similarities
≈o↓, ≈o↑, and the bisimilarity 'o⇓ are congruences. Moreover, the following soundness results
hold:

1. 4o
↓ ⊂ ≤↓ and ≈o↓ ⊂ ∼↓.

2. 4o
↑ ⊂ ≥LCA and ≈o↑ ⊂ ∼LCA.

3. 'o⇓ ⊆ ≈o↑ ⊂ ∼LCA.

We prove Main Theorem 3.6 in Sect. 4: the results for may-similarity 4↓ are standard and a
sketch is given in Theorem 4.6, the full proof is given in Appendix B.The results for should-
similarity 4↑ are proved in Theorems 4.14 and 4.15. For should-bisimilarity the inclusion 'o⇓ ⊆
≈o↑ holds, since '⇓ is F↑-dense. The congruence property for '⇓ requires a separate proof which
is in Appendix C. Strictness of the inclusions will be proved by counter-examples.

3.2 Discussion on Similarities for Should-Convergence

In this section we discuss other variants of should-similarity for LCA. As we show, the first and
second are unsound, the third may be a slight generalization, and the status of the fourth is
unknown.

Definition 3.7. Naive Should-Similarity in LCA, 4↑N := gfp(F↑N):
Let s F↑N (η) t hold iff s↑ =⇒ t↑ and LR(s, t, η).

6 Manfred Schmidt-Schauß and David Sabel

Convex Should-Similarity in LCA, 4↑X := gfp(F↑X):
Let s F↑X (η) t hold iff s↑ =⇒ t↑, t 4↓ s, and t⇓ =⇒ LR(s, t, η).

Should-Similarity in LCA, variant 4↑C := gfp(F↑C):
Let s F↑C (η) t hold iff s↑ =⇒ t↑, t ≤↓ s, and LR(s, t, η).

Should-Similarity in LCA, variant 4↑′ := gfp(F↑′):
Let s F↑′(η) t hold iff s↑ =⇒ t↑, LR(s, t, η), and LR(t, s, η−1).

Obviously, (choice False True) 6≤↑ True using the context ([·] Id Ω). This suggests the naive
should-similarity 4↑N which, however, is insufficient:

Lemma 3.8. 4↑N is unsound w.r.t. ≤↑.

Proof. While Id 4↑N λx .choice x Id holds, we have (Y (λx.choice x Id) Id)⇓, but (Y Id Id)⇑.
Thus 4↑N is not a precongruence and not sound w.r.t. ≤↑. ut

In the definition of 4↑ this is the reason for the additional condition t 4↓ s inside F↑ (which
in fact implies s ≈↓ t, since 4↑ ⊂ 4↓). Further generalizing the definition of 4↑ by requiring the
recursive test to hold only if the right expression is should-convergent leads to the convex should-
similarity, 4↑X , which is analogous to the definition of so-called (unsound) “convex similarity”
in [19] for a call-by-name lambda-calculus with amb, but using must-convergence instead of
should-convergence. However, also for LCA the similarity 4↑X is unsound:

Lemma 3.9. 4↑X is unsound w.r.t. ≤↑.

Proof. Let s1 := amb (λx.Ω) (λx, y, z.Ω) and s2 := amb s1 (λx, y.Ω). Then s2 4↑X s1, but

s2 6≤↑ s1, since for the context C := (amb ([·] Id) Id) Id we have C[s2]
LCA,∗−−−−→ Ω and thus

C[s2] ↑, but C[s1] ⇓.

For calculi with only erratic or demonic choice, 4↑X is sound (see Sect. 5).
A further generalization of the successful similarity 4↑ by replacing the t 4↓ s condition by

t ≤↓ s leads to 4↑C , for which it is easy to see that 4↑ ⊆ 4↑C , and we conjecture that it is sound,
but a soundness proof would require at least a ciu-Lemma for LCA. As another strengthening of
the conditions inside F↑N we added the condition LR(t, s, η−1) resulting in the should-similarity
4↑′ We did neither find a soundness proof for 4↑′ , since the condition ∀t ↓ λx.t′∃s ↓ λx.s′ is
inappropriate for Howe’s method, nor did we find a counter-example showing unsoundness, so
we leave soundness of 4↑′ as an open question.
Our results imply that the following properties hold for 4↑′ :

Lemma 3.10. 4↑′ ⊆ 4↓ ⊆ ≤↓ and '⇓ ⊆ ≈↑′ ⊆ ≈↓ ⊆ ∼↓.

Proof. The first chain of inclusions is valid, since 4↑′ is F↓-dense, i.e. 4↑′ ⊆ F↓(4↑′), and since
4↓ is sound for ≤↓ (Main Theorem 3.6). In the second chain, the inclusion '⇓ ⊆ ≈↑′ holds,
since '⇓ ⊆ F↑′('⇓) and since '⇓ is symmetric. The remaining inclusions follow from the first
chain. ut

4 Soundness Proofs for Similarity in LCA

4.1 Preliminaries on Howe’s Method

In this section we will introduce the necessary notions to apply Howe’ method for the soundness
proofs of similarities w.r.t. contextual preorder and contextual equivalence in LCA. Here we
employ higher order abstract syntax as e.g. in [7] for the proof and write τ(..) for an expression
with top operator τ , which may be λ, application, or amb. For consistency of terminology and
treatment with that in other papers such as [7], we assume that removing the top constructor
λx in relations is done after a renaming. For example, λx.s µ λy.t is renamed to the same bound

Simulation in the Call-by-Value Lambda-Calculus with AMB 7

variable before further reasoning about s, t, to λz.s[z/x] µ λz.t[z/y] for a fresh variable z. A
relation µ is operator-respecting, iff si µ ti for i = 1, . . . , n implies τ(s1, . . . , sn) µ τ(t1, . . . , tn).In
these preliminaries for Howe’s method we assume that there is a preorder 4, which is a reflexive
and transitive relation on closed expressions. The goal is to show that 4 is a precongruence. We
then define the Howe candidate relation 4H and show its properties. Later 4 is instantiated by
the may- or should-similarity or by the should-bisimilarity.

Definition 4.1. Given a reflexive and transitive relation 4 on closed expressions, the Howe
(precongruence candidate) relation 4H is a binary relation on open expressions defined induc-
tively on the structure of the left hand expression:

1. If x 4o s then x 4H s.
2. If there are expressions s, si, s

′
i s.t. τ(s′1, . . . , s

′
n) 4o s with si 4H s′i for i = 1, . . . , n, then

τ(s1, . . . , sn) 4H s.

Lemma 4.2. We have x 4H s iff x 4o s; and τ(s1, . . . , sn) 4H s iff there is some expression
τ(s′1, . . . , s

′
n) 4o s such that si 4H s′i for i = 1, . . . , n.

Helpful properties of 4H (proved in Appendix A) are:

Lemma 4.3. The following properties hold:

1. 4H is reflexive.

2. 4H and (4H)c are operator-respecting.

3. 4o ⊆ 4H and 4 ⊆ (4H)c.

4. 4H ◦4o ⊆ 4H .

5. (v 4H v′ ∧ t 4H t′) =⇒ t[v/x] 4H t′[v′/x] for values v, v′.

6. s 4H t implies that σ(s) 4H σ(t) for every value-substitution σ.

7. 4H ⊆ ((4H)c)o.

8. If (4H)c = 4, then 4H = 4o.

9. If s, t are closed, s = τ(s1, . . . , sar(τ)) and s 4H t holds, then there are s′i, such that
τ(s′1, . . . , s

′
ar(τ)) is closed, ∀i : si 4H s′i and τ(s′1, . . . , s

′
ar(τ)) 4 t.

As a general outline, the goal of Howe’s method is to show that 4H = 4o, which implies
that 4o is operator-respecting and hence it is a precongruence.

Lemma 4.4. The relations 4α, 4o
α from Definition 3.4 are reflexive and transitive. The rela-

tions '⇓, and 'o⇓ are equivalence relations.

Proof. Reflexivity holds since η := {(s, s) | s ∈ ExprLCA, s closed} ∪ 4α satisfies η ⊆ F↓(η).
Transitivity holds since η := 4↓ ∪ (4↓ ◦4↓) satisfies η ⊆ F↓(η). Similar coinduction arguments
show the other claims. ut

Lemma 4.5. s 4o
α t ⇐⇒ λx.s 4o

α λx.t.

4.2 Soundness of May-Similarity

Theorem 4.6. May-similarity behaves as expected: The similarity 4↓ for may-convergence is a
precongruence on closed expressions and sound for ≤c↓. Extending this on all expressions: 4o

↓ is
a precongruence and sound for ≤↓.

Proof (Sketch(see Appendix B)). Use Howe’s method. Define 4↓H as an extension of 4↓ using
Definition 4.1. Then show that 4c

↓H satisfies the fixpoint conditions for 4↓, which implies 4c
↓H ⊆

4↓, and so 4c
↓H = 4↓, which implies the precongruence property, and 4↓H = 4o. ut

8 Manfred Schmidt-Schauß and David Sabel

Corollary 4.7. The mutual similarity ≈↓ is a congruence and sound for ∼c↓. Also ≈o↓ is a
congruence and sound for ∼↓.

But note that ≈↓ is not complete using a similar example as in [15]:

Proposition 4.8. ≈o↓ 6= ∼↓

Proof. With F = λf.λz.choice (λx .Ω) ((λx1 , x2 .x1) (f z)) one can verify that Y F Id reduces
to λx1, . . . , xn.Ω for any n ≥ 1. The reduction sequence is: Y F Id → F ′ F ′ Id with F ′ =
(λx.F (λz.x x z)).
→ F (λz.(F ′ F ′ z)) Id
→ choice (λx .Ω) ((λx1 , x2 .x1) ((λz ,F ′ F ′ z) Id))
→ (λx1, x2.x1) (F ′ F ′ Id). Using a context lemma for LCA, one can show that Y F Id ∼↓ Top.
However, Top 64↓ Y F Id , since after evaluating Top to λz.(True Top z) = v1 , we have to choose
a value λx1, . . . , xn.Ω = v2 of (Y F Id) for a fixed number n, and applying v1 to n arguments
converges, but the application of v2 to n arguments diverges. ut

4.3 Soundness of Should-Similarity

In this section we present a proof for soundness of should-similarity, i.e. 4o
↑ ⊆ ≤LCA. We first

show some properties of 4↑:

Lemma 4.9. 4↑ ⊆ ≈↓ ⊆ ∼↓ and '⇓ ⊆ ≈↑ ⊆ ∼↓.

Proof. The first inclusion holds, since 4↑ ⊆ <↓ by definition, 4↑ ⊆ 4↓ (since 4↑ is F↓-dense),
and 4↓ ⊆ ≤↓ by Theorem 4.6. In the second chain, the inclusion '⇓ ⊆ ≈↑ holds, since '⇓
satisfies all the conditions of F↑, and since '⇓ is symmetric. The remaining inclusion follows
from the first chain.

The goal in the following is to show that the candidate relation 4↑H derived from 4↑ can
be treated using Howe’s method to prove its soundness. Our proof relies on the precongruence
property of 4o

↓ (which is already proved in Theorem 4.6) for the transfer of may-divergence over
the candidate relation.

Definition 4.10. The candidate relation 4↑H is defined w.r.t. the relation 4↑.

Lemma 4.11. 4↑H ⊆ ≈o↓.

Proof. To show that s 4↑H t =⇒ s ≈o↓ t, we use induction on the structure of s. In the case
s = x the definition of the candidate implies x 4o

↑ t, which implies x ≈o↓ t by Lemma 4.9. If s =
τ(s1, . . . , sn), there is some τ(t1, . . . , tn) 4o

↑ t with si 4↑H ti for all i. The induction hypothesis
implies si ≈o↓ ti for all i, and the congruence property of ≈o↓ shows τ(s1, . . . , sn) ≈o↓ τ(t1, . . . , tn).
Transitivity of ≈o↓ and 4o

↑ ⊆ ≈o↓ now shows s = τ(s1, . . . , sn) ≈o↓ t. ut

Proposition 4.12. Let s, t be closed expressions, s 4↑H t and s↓λx.s′. Then there is some λx.t′

such that t↓λx.t′ and s′ 4↑H t′.

Proof. The proof is by induction on the length of the reduction of s↓λx.s′.

– If s = λx.s′, then there is some closed λx.t′ with s′ 4↑H t′ and λx.t′ 4↑ t. The latter implies
that there is some closed λx.t′′ with t↓λx.t′′ and t′ 4o

↑ t′′, and so s′ 4↑H t′′ by Lemma 4.3
(4).

– Case s = amb s1 s2, and s↓λx.s′. Then there is some closed expression amb t1 t2 4↑ t with
si 4↑H ti for i = 1, 2. W.l.o.g. let s1↓λx.s′. Then by induction, there is some λx.t′ with
t1↓λx.t′ and s′ 4↑H t′. Obviously, also amb t1 t2↓λx.t′. From amb t1 t2 4↑ t, we obtain that
there is some λx.t′′ with t↓λx.t′′ and t′ 4o

↑ t
′′, which implies s′ 4↑H t′′ by Lemma 4.3 (4).

Simulation in the Call-by-Value Lambda-Calculus with AMB 9

– If s = (s1 s2), then there is some closed t′ = (t′1 t′2) 4↑ t with si 4↑H t′i for

i = 1, 2. Since (s1 s2)↓λx.s′ there is a reduction sequence (s1 s2)
LCA,∗−−−−→ (λx.s′1) s2

LCA,∗−−−−→
(λx.s′1) (λx.s′2)

LCA−−−→ s′1[λx.s
′
2/x]

LCA,∗−−−−→ λx.s′ such that si↓λx.s′i for i = 1, 2. By induc-
tion, there are expressions λx.t′′i with t′i↓λx.t′′i and s′i 4↑H t′′i . Lemma 4.3 (5) now shows
s′1[λx.s

′
2/x] 4↑H t′′1[λx.t′′2/x]. Now we can again use the induction hypothesis which shows

that there is some λx.t′′ with t′′1[λx.t′′2/x]↓λx.t′′ and s′ 4↑H t′′. The relation (t′1 t
′
2) 4↑ t

implies that t↓λx.t0 with t′′ 4o
↑ t0, and hence s′ 4↑H t0 by Lemma 4.3 (4). ut

Proposition 4.13. Let s, t be closed expressions, s 4↑H t and s↑. Then t↑.

Proof. The proof is by induction on the number of reductions of s to a must-divergent expression,
and on the size of expressions as a second measure.

– The base case is that s⇑. Then Lemma 4.11 shows t⇑.

– Let s = amb s1 s2 with s↑. Then there is some closed expression t′ = amb t1 t2 with si 4↑H ti
for i = 1, 2 and amb t1 t2 4↑ t. It follows that s1↑ as well as s2↑. Applying the induction
hypothesis shows that t1↑ as well as t2↑, and hence (amb t1 t2)↑. From amb t1 t2 4↑ t we
obtain t↑.

– Let s = (s1 s2) with s↑. Then there is some closed expression t′ = (t1 t2) 4↑ t and si 4↑H ti
for i = 1, 2. There are several cases:

1. If (s1 s2)
LCA,∗−−−−→ (s′1 s2) and s′1⇑, then s1↑ and by the induction hypothesis also t1↑, and

hence t′↑, which implies t↑.
2. If (s1 s2)

LCA,∗−−−−→ (λx.s′1) s2
LCA,∗−−−−→ (λx.s′1) s

′
2 and s′2⇑, then s2↑ and by induction hypoth-

esis also t2↑, and hence t′↑, which implies t↑.
3. If (s1 s2)

LCA,∗−−−−→ (λx.s′1) s2
LCA,∗−−−−→ (λx.s′1) (λx.s′2)

LCA−−−→ s′1[λx.s
′
2/x]

LCA,∗−−−−→ s0 where
s0⇑. Then si↓λx.s′i for i = 1, 2 and by Proposition 4.12 there are reductions ti↓λx.t′i for
i = 1, 2 with s′i 4↑H t′i. Thus s′1[λx.s

′
2/x] 4↑H t′1[λx.t

′
2/x], and hence by the induction

hypothesis t′1[λx.t
′
2/x]↑. Thus (t1 t2)↑, and now (t1 t2) 4↑ t implies t↑. ut

Theorem 4.14. The relation 4↑ is a precongruence on closed expressions and 4o
↑ is a precon-

gruence on all expressions.

Proof. We have 4↑ ⊆ 4c
↑H by Lemma 4.3 (3). Since 4c

↑H satisfies the fixpoint conditions of 4↑
(using Propositions 4.12 and 4.13), coinduction shows that 4c

↑H ⊆ 4↑. Hence, 4c
↑H = 4↑ and

also 4↑H = 4o
↑.

Theorem 4.15. 4o
↑ is sound for ≥LCA.

Proof. Let s 4o
↑ t, and let C be a context such that C[s], C[t] are closed. First assume that

C[s]↑. Theorem 4.14 shows that C[s] 4o
↑ C[t], and so C[t]↑. Lemma 4.9 and Theorem 4.6. imply

C[s]↓ ⇐⇒ C[t]↓. Hence s ≥LCA t. ut

Theorem 4.16. The similarity 4↑ is incomplete for ≥⇓.

Proof. We give a counterexample (details are in Appendix D): Let A = choice Ω (λx.A),
B0 = Top, Bi+1 = λx.choice Ω Bi; and B = choice Ω (choice B0 (choice B1 . . .)). Then
Top '↓ A '↓ Bi for all i and Top '↓ B . Also Bi <↑ A for all i. Using a context lemma for
closed expressions it can be shown that A ∼LCA B. It is easy to see that B 4↑ A, but A 64↑ B.
2

Comparing s, t for ≤↑, the incompleteness of 4↑ cannot appear if t reduces to only finitely
many abstractions.

10 Manfred Schmidt-Schauß and David Sabel

Proposition 4.17. Assume that s is a closed abstraction and t is a closed expression such that
s ≤↑ t and there is a nonempty set T := {t1, . . . , tn} of closed abstractions, such that t↓λx.t′
implies λx.t′ ∈ T . Then there is some i with s ≤↑ ti.

Proof. Suppose this is false. Then there are contexts C1, . . . , Cn, such that Ci[s], Ci[ti]
are closed for all i, and for all i = 1, . . . , n: Ci[s]↑ and Ci[ti]⇓. The context C =
(λx.amb C1[x] (amb . . . (amb Cn−1[x] Cn[x]))) [·] has the property: C[s]↑, but C[t]⇓, which is
a contradiction.

Soundness of the applicative similarities implies:

Proposition 4.18. Let s, t be closed expressions, such that for all λx.s′: s↓λx.s′ ⇐⇒ t↓λx.s′
(the same results modulo alpha-equivalence), and s↑ ⇐⇒ t↑, then s ≈↑ t, and hence also
s ∼LCA t.
If s, t are open expressions, such that for all value substitutions σ, such that σ(s), σ(t) are closed:
σ(s)↓λx.s′ ⇐⇒ σ(t)↓λx.s′ (modulo alpha-equivalence), and σ(s)↑ ⇐⇒ σ(t)↑, then s ≈o↑ t,
and hence also s ∼LCA t.

Corollary 4.19. Several identities obviously hold in LCA:

(λx.s) (λx.t) ∼LCA s[λx.t/x] (amb Ω s) ∼LCA s (amb s s) ∼LCA s

(amb s t) ∼LCA (amb t s) amb s1 (amb s2 s3) ∼LCA amb (amb s1 s2) s3

An example that is a bit more complex is:

Example 4.20. Let F = λf.λx.amb x (f x). We show that Y F ∼ Id using similarities. It is easy
to see that for all closed abstrations r: Id r↓r and also (Y F r)↓r′ =⇒ r = r′. The reduction
sequences for (Y F r) are as follows:
(Y F r) → F ′ F ′ r where F ′ = (λx.F (λz.x x z). The next expression in the sequence is
F (λz.F ′ F ′ z) r → . . . → amb r (F ′ F ′ r). Hence r is one possible outcome. It is also the
only possible abstraction as ed of the reduction sequence. Note that (Y F r) has arbitrary long
successful reduction sequences to r. We also have (Id r) ⇓ as well as (Y F r) ⇓. The simulation
definitions imply Id ' (Y F), and hence Id ∼ (Y F).

5 Simulations for the Call-By-Value Choice Calculus

Even though amb can simulate choice in different variants, if only (erratic or demonic) choice
is permitted instead of amb, then the expressivity is different, which is reflected in different
contextual equivalences. For example Ω is the smallest element if only choice is permitted,
which is false in LCA. In this section we consider erratic choice only, since demonic and erratic
choice can encode each other in a call-by-value calculus.

Definition 5.1 (The calculus LCC). The calculus LCC is defined analogous to LCA with
the following differences:

– Instead of amb the syntax has a binary operator choice.
– The hole of evaluation contexts is not inside arguments of choice.
– The reduction rules are (cbvbeta) and choice-reductions:

(choicel) : (choice s t)→ s; and (choicer) : (choice s t) → t.

– Reduction
LCC−−−→ applies the reduction rules in evaluation contexts.

– The definitions of contextual equivalences are as for LCA.

The general properties on similarities and the candidate relation presented in Sect. 4.1 also hold
for LCC. We immediately start with the similarity definitions and use the convex variant. In
abuse of notation, we use the same symbols for the relations as for LCA.

Simulation in the Call-by-Value Lambda-Calculus with AMB 11

Definition 5.2. We define simulations for LCC on closed expressions:

May-Similarity in LCC, 4↓ := gfp(F↓): Let s F↓(η) t hold iff LR(s, t, η).

Should-Similarity in LCC, 4↑X := gfp(F↑X):
Let s F↑X (η) t hold iff s↑ =⇒ t↑, t 4↓ s, and t⇓ =⇒ LR(s, t, η).

Doing the same using Howe’s method for 4↑X as for LCA shows:

Theorem 5.3. May-similarity 4↓ in LCC is a precongruence and sound for the contextual may-
preorder, and the mutual may-similarity ≈↓ is a congruence and sound for may-equivalence.

Definition 5.4. The candidate relation 4↑XH is defined w.r.t. the relation 4↑X .

Lemma 5.5. 4↑XH ⊆ <o
↓.

Mostly, the proofs are the same as for LCA. So we only exhibit the differences.

Proposition 5.6. Let s, t be closed LCC-expressions, s 4↑XH t, t⇓, s↓λx.s′. Then there is
some λx.t′ such that t↓λx.t′ and s′ 4↑XH t′.

Proof. We work in the calculus LCC. The proof is by induction on the length of the reduction
of s↓λx.s′. There are three cases: s = λx.s′, s = (choice s1 s2) and s = (s1 s2), where the first
and third cases are the same as for LCA. So we only show the case for the choice-expression:
Case s = choice s1 s2, and s↓λx.s′. Then there is some closed expression choice t1 t2 4↑X t
with si 4↑XH ti for i = 1, 2. Note that t⇓ implies t1⇓ and t2⇓. W.l.o.g. let s1↓λx.s′. Then by
induction, there is some λx.t′ with t1↓λx.t′ and s′ 4↑XH t′. Obviously, also choice t1 t2↓λx.t′.
From choice t1 t2 4↑X t and t⇓, we obtain that there is some λx.t′′ with t↓λx.t′′ and t′ 4o

↑X t′′,
which implies s′ 4↑XH t′′ by Lemma 4.3 (4). 2

Note that in the calculus LCA this proof fails, since the induction hypothesis cannot be
proved for si, ti.

Proposition 5.7. Let s, t be closed expressions, s 4↑XH t, and s↑. Then t↑.

Proof. The proof is by induction on the number of reductions of s to a must-divergent expression,
and on the size of expressions as a second measure.
The base case is that s⇑. Then Lemma 5.5 shows t⇑, since t 4↓ s must hold, which implies
s ≥↓ t and thus s ≤⇑ t.
Let s = choice s1 s2 with s↑, and assume that t⇓. Then there is some closed expression
t′ = choice t1 t2 with si 4↑XH ti for i = 1, 2 and choice t1 t2 4↑X t. This implies t1⇓ and
t2⇓. It follows that s1↑ or s2↑. Applying the induction hypothesis shows that t1↑ or t2↑, which
contradicts the assumption t⇓.

Theorem 5.8. The relation 4↑X in LCC is a precongruence on closed expressions and 4o
↑X is

a precongruence on all expressions.

Proof. We already have 4↑X ⊆ 4c
↑XH by Lemma 4.3 (3). Propositions 5.6 and 5.7 show that

(4↑XH)c satisfies the fixpoint conditions of 4↑X and thus coinduction shows (4↑XH)c ⊆ 4↑X .
Hence we have (4↑XH)c = 4↑X . Lemma 4.3.(8) then shows the equation 4↑XH = 4o

↑X . 2

Theorem 5.9. 4o
↑X is sound for ≥LCC , and ≈o↑X is sound for ∼LCC .

Proof. We first show that 4o
↑X is sound for ≤↑,LCC (and thus also for ≥⇓,LCC): Let s 4o

↑X t, and
let C be a context such that C[s], C[t] are closed. First assume that C[s]↑. Theorem 5.8 shows
that C[s] 4↑X C[t], and so C[t]↑. Since s 4o

↑X t also implies t 4o
↓ s and thus t ≤↓,LCC s, we have

4o
↑X ⊆ ≥LCC . The second part of the theorem follows by symmetry. 2

12 Manfred Schmidt-Schauß and David Sabel

Proposition 5.10. Let s, t be closed with s↑, t↑. Then s ≈↓ t =⇒ s ∼LCC t.

Proof. First note that Ω ≤LCC r for all r, which follows from Theorems 5.3 and 5.9. Theorem
5.9 shows that s ≈↓ t, s↑, t↑ implies that s ∼LCC t.

Note that this proposition is not valid in LCA.

Proposition 5.11. Convex should-simulation 4↑X is not complete for ≤↑,LCC .

Proof. Let s = choice Ω (λx.Ω) and t = choice Ω Top. Then s ≤↑,LCC t, as well as t ≤↑,LCC s
holds, since for every context C, if C[s]↑, then also C[t]↑ by selecting always the Ω in a choice-
reduction, and also vice versa. However, t 64↓ s (since Top 64↓ λx .Ω), and thus s 4↑X t does not
hold. ut

6 Conclusion

We have shown that in the call-by-value lambda calculus with amb there exists a very expressive
(an argument for this is Proposition 4.17) mutual similarity for should-convergence, which is a
congruence and sound for contextual equivalence. We also showed that the used method can be
transferred to the call-by-value lambda calculus with choice. This novel and encouraging result
may enable further research for more expressive non-deterministic and/or concurrent calculi and
languages and for call-by-need lambda calculi using the approximation techniques from e.g. [15,
16].

References

1. Abramsky, S.: The lazy lambda calculus. In Turner, D.A., ed.: Research Topics in Functional Programming,
Addison-Wesley (1990) 65–116

2. Broy, M.: A theory for nondeterminism, parallelism, communication, and concurrency. Theoret. Comput.
Sci. 45 (1986) 1–61

3. Carayol, A., Hirschkoff, D., Sangiorgi, D.: On the representation of McCarthy’s amb in the pi-calculus.
Theoret. Comput. Sci. 330(3) (2005) 439–473

4. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1992)
5. Fournet, C., Gonthier, G.: A hierarchy of equivalences for asynchronous calculi. J. Log. Algebr. Program.

63(1) (2005) 131–173
6. Gordon, A.D.: Bisimilarity as a theory of functional programming. Theoret. Comput. Sci. 228(1-2) (1999)

5–47
7. Howe, D.: Equality in lazy computation systems. In: 4th IEEE Symp. on Logic in Computer Science. (1989)

198–203
8. Howe, D.: Proving congruence of bisimulation in functional programming languages. Inform. and Comput.

124(2) (1996) 103–112
9. Laneve, C.: On testing equivalence: May and must testing in the join-calculus. Technical Report Technical

Report UBLCS 96-04, University of Bologna (1996)
10. Lassen, S.B.: Normal form simulation for McCarthy’s amb. Electr. Notes Theor. Comput. Sci. 155 (2006)

445–465
11. Lassen, S.B., Moran, A.: Unique fixed point induction for McCarthy’s amb. In Kutylowski, M., Pacholski, L.,

Wierzbicki, T., eds.: Proc. 24th International Symposium on Mathematical Foundations of Computer Science.
Number 1672 in LNCS, Springer (1999) 198–208

12. Lassen, S.B., Pitcher, C.S.: Similarity and bisimilarity for countable non-determinism and higher-order func-
tions. Electron. Notes Theor. Comput. Sci. 10 (2000)

13. Lassen, S.B.: Relational Reasoning about Functions and Nondeterminism. PhD thesis, University of Aarhus
(1998)

14. Levy, P.B.: Amb breaks well-pointedness, ground amb doesn’t. Electron. Notes Theor. Comput. Sci. 173(1)
(2007) 221–239

15. Mann, M.: Congruence of bisimulation in a non-deterministic call-by-need lambda calculus. Electron. Notes
Theor. Comput. Sci. 128(1) (2005) 81–101

16. Mann, M., Schmidt-Schauß, M.: Similarity implies equivalence in a class of non-deterministic call-by-need
lambda calculi. Inform. and Comput. 208(3) (2010) 276 – 291

Simulation in the Call-by-Value Lambda-Calculus with AMB 13

17. Mason, I., Talcott, C.L.: Equivalence in functional languages with effects. J. Funct. Programming 1(3) (1991)
287–327

18. McCarthy, J.: A Basis for a Mathematical Theory of Computation. In Braffort, P., Hirschberg, D., eds.:
Computer Programming and Formal Systems, North-Holland, Amsterdam (1963) 33–70

19. Moran, A.K.D.: Call-by-name, call-by-need, and McCarthy’s Amb. PhD thesis, Chalmers University, Sweden
(1998)

20. Niehren, J., Sabel, D., Schmidt-Schauß, M., Schwinghammer, J.: Observational semantics for a concurrent
lambda calculus with reference cells and futures. Electron. Notes Theor. Comput. Sci. 173 (2007) 313–337

21. Ong, C.H.L.: Non-determinism in a functional setting. In Vardi, M.Y., ed.: Proc. 8th IEEE Symposium on
Logic in Computer Science, IEEE Computer Society Press (1993) 275–286

22. Pitts, A.M.: Howe’s method for higher-order languages. In Sangiorgi, D., Rutten, J., eds.: Advanced Topics in
Bisimulation and Coinduction. Volume 52 of Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press (2011) 197–232 (chapter 5).

23. Rensink, A., Vogler, W.: Fair testing. Inform. and Comput. 205(2) (2007) 125–198
24. Sabel, D., Schmidt-Schauß, M.: A call-by-need lambda-calculus with locally bottom-avoiding choice: Context

lemma and correctness of transformations. Math. Structures Comput. Sci. 18(03) (2008) 501–553
25. Sabel, D., Schmidt-Schauß, M.: A contextual semantics for Concurrent Haskell with futures. In Schneider-

Kamp, P., Hanus, M., eds.: Proc. 13th International ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming, ACM (2011) 101–112

26. Sabel, D., Schmidt-Schauß, M.: Conservative concurrency in Haskell. In Dershowitz, N., ed.: Proc. 27th
ACM/IEEE Symposium on Logic in Computer Science (LICS ’12), IEEE Computer Society (2012) 561–570

27. Schmidt-Schauß, M., Sabel, D.: Correctness of an STM Haskell implementation. In Morrisett, G., Uustalu, T.,
eds.: Proc. 18th ACM SIGPLAN International Conference on Functional programming, ACM (2013) 161–172

28. Schmidt-Schauß, M., Sabel, D., Machkasova, E.: Counterexamples to applicative simulation and extensionality
in non-deterministic call-by-need lambda-calculi with letrec. Inf. Process. Lett. 111(14) (2011) 711–716

29. V.Koutavas, P.B.Levy, E.Sumii: Limitations of applicative bisimulation. In: Modelling, Controlling and
Reasoning about State. Number 10351 in Dagstuhl Seminar Proceedings (2010)

14 Manfred Schmidt-Schauß and David Sabel

A Proofs for the Howe-Candidate Relation

Proof of Lemma 4.3

Proof. Parts (1), (2), and (3) can be shown by structural induction and using reflexivity of
4o. Part (4) follows from the definition, Lemma 4.2, and transitivity of 4o. Part (5) is shown
by structural induction on the expression t: In the case x 4H t′, we obtain x 4o t′ from the
definition, and so v′ 4o t′[v′/x] by Lemma 3.2 (2), since v, v′ are values, and hence x[v/x] 4H

t′[v′/x] using (4). In the case y 4H t′ with x 6= y, we obtain y 4o t′ from the definition, and
y[v/x] = y 4o t′[v′/x] and thus y = y[v/x] 4H t′[v′/x]. If t = τ(r1, . . . , rn), t 4H t′, then there
is some τ(t′1, . . . , t

′
n) 4o t′ with ti 4H t′i. W.l.o.g. bound variables have fresh names. We have

ti[v/x] 4H t′i[v
′/x] and τ(t′1, . . . , t

′
n)[v′/x] 4o t′[v′/x]. Thus t[v/x] 4H t′[v′/x]. Part (6) follows

from item (5). Part (7) follows from item (6) and Lemma 3.2. For part (8) assume that 4c
H = 4.

Then (4c
H)o = 4o. Part (7) shows 4H ⊆ (4c

H)o and part (3) shows 4o ⊆ 4H , which together
implies equality 4H = 4o. ut

Lemma A.1. The middle expression in the definition of 4H can be chosen to be closed if s, t
are closed: Let s = τ(s1, . . . , sar(τ)), such that s 4H t holds. Then there are operands s′i, such
that τ(s′1, . . . , s

′
ar(τ)) is closed, ∀i : si 4H s′i and τ(s′1, . . . , s

′
ar(τ)) 4

o t.

Proof. The definition of 4H implies that there is an expression τ(s′′1, . . . , s
′′
ar(τ)) such that si 4H

s′′i for all i and τ(s′′1, . . . , s
′′
ar(τ)) 4o t. Let σ be the substitution with σ(x) := vx for all

x ∈ FV (τ(s′′1, . . . , s
′′
ar(τ))), where vx is any closed abstraction. Lemma 4.3 now shows that si =

σ(si) 4H σ(s′′i) holds for all i. The relation σ(τ(s′′1, . . . , s
′′
ar(τ))) 4 t holds, since t is closed and

due to the definition of an open extension. The requested expression is τ(σ(s′′1), . . . , σ(s′′ar(τ))).
ut

B Precongruence of May-Similarity

The goal in the following is to show that 4↓ is a precongruence and sound for ≤↓. Here we
use the definitions and results in Sections 4.1 and 3.1, where the definitions in Sections 4.1 are
applied to 4↓. This proof proceeds by defining a congruence candidate 4↓H by the closure of 4↓
within contexts using Howe’s technique, which obviously is operator-respecting, but transitivity
needs to be shown. By proving that 4↓ and 4↓H coincide, on the one hand transitivity of 4↓H
follows (since 4↓ is transitive) and on the other hand (and more importantly) it follows that 4↓
is operator-respecting (since 4↓H is operator-respecting) and thus a precongruence.

Definition B.1. The relation 4↓H is defined using Definition 4.1 for 4↓.

Lemma B.2. If s
LCA−−−→ s′, then s′ 4o

↓ s.

Lemma B.3. If s = λx.s′ and t are closed, and λx.s′ 4↓H t, then there is some closed λx.t′

with t
LCA,∗−−−−→ λx.t′ and s′ 4↓H t′, and thus also λx.s′ 4↓H λx.t′.

Proof. The relation λx.s′ 4↓H t implies that there is a closed λx.t′′, such that s′ 4↓H t′′ (and
hence λx.s′ 4↓H λx.t′′), and λx.t′′ 4↓ t. This in turn implies that for some λx.t′, we have

t
LCA,∗−−−−→ λx.t′ with t′′ 4o

↓ t
′. Lemma 4.3 (4) thus implies s′ 4↓H t′ and Lemma 4.5 shows

λx.s′ 4↓H λx.t′.

Proposition B.4. Let s, t be closed expressions, s 4↓H t and s
LCA−−−→ s′ where s is the redex.

Then s′ 4↓H t.

Proof. The relation s 4↓H t implies that s = τ(s1, . . . , sn) and by Lemma 4.3 part 9 there is
some closed t′ = τ(t′1, . . . , t

′
n) with si 4↓H t′i for all i and t′ 4↓ t.

Simulation in the Call-by-Value Lambda-Calculus with AMB 15

– For the (cbvbeta)-reduction, s = (s1 s2), where s1 = λx.s′1, s2 = λx.s′2 are closed, and
t′ = (t′1 t

′
2) is also closed. The relation (λx.s′1) = s1 4↓H t′1 and Lemma B.3 imply that

there exists a closed expression λx.t′′1 4↓ t′1 with t′1
LCA,∗−−−−→ λx.t′′1, s′1 4↓H t′′1, and λx.s′1 4↓H

λx.t′′1. Also for t′2 and since s2 = λx.s′2 4↓H t′2, there is some closed λx.t′′2 4↓ t′2 with

t′2
LCA,∗−−−−→ λx.t′′2, s′2 4↓H t′′2, and λx.s′2 4↓H λx.t′′2. Since 4↓H is operator-respecting, we

have (s1 s2) 4↓H ((λx.t′′1) (λx.t′′2)) and also t′ = (t′1 t
′
2)

LCA,∗−−−−→ ((λx.t′′1) (λx.t′′2)). Now on
both sides a call-by-value beta-reduction is possible and results in s′1[s2/x] and t′′1[(λx.t′′2)/x],
respectively. Since s′1 4↓H t′′1 and s2 4↓H λx.t′′2, we have s′1[s2/x] 4↓H t′′1[(λx.t′′2)/x]. From

t′
LCA,∗−−−−→ t′′1[(λx.t′′2)/x], we obtain t′′1[(λx.t′′2)/x] 4↓ t′ 4↓ t, and so s′1[s2/x] 4↓H t.

– Suppose, the reduction is a (ambl)-reduction, where s = (amb s1 s2) and s
LCA−−−→ s1, which

is only possible if s1 = λx.s′1. Then there is t′ = (amb t′1 t
′
2) with si 4↓H t′i for i = 1, 2

and t′ 4↓ t. From s1 4↓H t′1 we derive that t′1
LCA,∗−−−−→ λx.t′′1 with s1 4↓H λx.t′′1. Now we

have the reduction sequence t′ = (amb t′1 t
′
2)

LCA,∗−−−−→ (amb (λx.t′′1) t′2)
LCA−−−→ (λx.t′′1), and by

(λx.t′′1) 4↓ (amb (λx.t′′1) t′2) 4↓ t′ 4↓ t, we derive (λx.t′′1) 4↓ t. Together with s1 4↓H λx.t′′1
we obtain s1 4↓H t.

– The reasoning is completely analogous for an (ambr)-reduction. ut

Proposition B.5. Let s, t be closed, s 4↓H t and s
LCA−−−→ s0. Then s0 4↓H t.

Proof. Let s = E[s′], where s′ is the redex and E ∈ E. We use induction on the length of
the path to the redex within s = E[s′], i.e. the path of the hole of E. The base case where

E = [·] is proven in Proposition B.4. Let E[s′], t be closed, E[s′] 4↓H t and E[s′]
LCA−−−→ E[s′′],

where we assume that the redex is not at the top level. The relation E[s′] 4↓H t implies that
E[s′] = τ(s1, . . . , sn) and that there is some closed t′ = τ(t′1, . . . , t

′
n) 4o

↓ t with si 4↓H t′i for all
i. Let j be the first index in the path to the redex. There are two cases:

1. j is also a reduction position in t′. If sj
LCA−−−→ s′j , then by induction hypothesis s′j 4↓H t′j .

Since 4↓H is operator-respecting, we also obtain E[s′′] = τ(s1, . . . , sj−1, s
′
j , sj+1, . . . , sn)

4↓H τ(t′1, . . . , t
′
j−1, t

′
j , t
′
j+1, . . . , t

′
n), and from τ(t′1, . . . , t

′
n) 4o

↓ t we have E[s′′] =
τ(s1, . . . , sj−1, s

′
j , sj+1, . . . , sn) 4↓H t.

2. j is not a reduction position in t′. Then the only possibility is that s = (s1 s2), j = 2,
t′ = (t′1 t

′
2), s1 is an abstraction, but t′1 is not an abstraction. Lemma B.3 shows that there is

an expression λx.t′′1 with s1 4↓H λx.t′′1 and λx.t′′1
LCA,∗←−−−− t′1. Hence also (λx.t′′1) t′2

LCA,∗←−−−− t′,
and so (λx.t′′1) t′2 4↓ t′. The first index of the redex position in ((λx.t′′1) t′2) is also

j = 2. Since s2
LCA−−−→ s′2, by the induction hypothesis s′2 4↓H t′2. We have (s1 s

′
2) 4↓H

((λx.t′′1) t′2) 4↓ t′ 4↓ t, hence also (s1 s
′
2) 4↓H t. ut

Now we are ready to prove that the (closed restriction of the) precongruence candidate and
similarity coincide.

Theorem B.6. 4c
↓H = 4↓ and 4↓H = 4o

↓.

Proof. Since 4↓ ⊆ 4c
↓H by Lemma 4.3, we have to show that 4c

↓H ⊆ 4↓. It is sufficient to show
that 4c

↓H satisfies the fixpoint equation for 4↓. We show that 4c
↓H ⊆ F↓(4c

↓H). Let s 4c
↓H t for

closed terms s, t. We show that s F↓(4c
↓H) t: If s ⇑LCA, then s F↓(4c

↓H) t holds by Definition 3.4.

If s ↓ λx.s1, then λx.s1 4c
↓H t by Proposition B.5. Lemma B.3 shows that t

LCA,∗−−−−→ λx.t1 for
some λx.t1 and s1 4↓H t1. Hence also s1 ((4↓H)c)o t1 by Lemma 4.3. This implies s F↓(4c

↓H) t.
Thus the fixpoint property of 4c

↓H w.r.t. F↓ holds, and hence 4c
↓H = 4↓.

Now we prove the second part. The first part, 4c
↓H = 4↓, implies (4c

↓H)o = 4o
↓. Lemma 4.3

(7) implies 4↓H ⊆ (4c
↓H)o = 4o

↓. The other direction is proven in Lemma 4.3 (3). ut

16 Manfred Schmidt-Schauß and David Sabel

Since 4o
↓ is reflexive and transitive (Lemma 4.4) and 4c

↓H is operator-respecting
(Lemma 4.3 (2)), this immediately implies:

Corollary B.7. 4o
↓ is a precongruence on expressions ExprLCA. If σ is a value-substitution,

then s 4o
↓ t implies σ(s) 4o

↓ σ(t).

We have soundness of may-simulation:

Theorem B.8. 4o
↓ ⊆ ≤↓.

Proof. Let s, t be expressions with s 4o
↓ t and C be a context such that C[s], C[t] are closed,

and C[s]↓. Since 4o
↓ is a congruence, the relation C[s] 4o

↓ C[t] holds, and in fact C[s] 4↓ C[t].
From the definition of 4↓ we see that C[t]↓ also holds. Since this is valid for all contexts C, we
have proved s ≤↓ t. Hence 4o

↓ ⊆ ≤↓.

Proposition B.9. ≤↓ 6⊆ 4o
↓.

Proof. An example similar to the one in [15] shows that there is an expression s that is like an
infinite amb of expressions λx1, . . . , xn.⊥, where it can be shown that s ∼↓ (Y K), however, the
simulation cannot detect this relation.

C Precongruence and Soundness of a Bisimilarity

C.1 Preliminaries for the Candidate Relation for Bisimilarities

The standard Howe-technique for similarities can be extended for bisimilarities. We will present
some preparations for this extension.

Definition C.1. The transitive closure 4∗H of 4H is defined as the least transitive relation such
that 4H ⊆ 4∗H . Equivalently, 4∗H is the union of all relations (4H)i, where (4H)i is the i-fold
relational composition of 4H .

The following lemma represents the core of the transitive closure trick explained in [22]. It
helps to circumvent the asymmetry of 4H .

Lemma C.2. If 4 is an equivalence relation (i.e. we could also write '), then the transitive
closure 4∗H is also an equivalence relation.

Proof. Reflexivity of 4∗H follows from reflexivity of 4H , transitivity from its definition. Symmetry
of 4∗H requires an inductive argument on the size of expressions, where it is sufficient to show
that s 4H t implies t 4∗H s using induction on the construction of the transitive closure.
x 4H t implies t 4H x, since x 4o t, hence t 4o x by symmetry, and since 4o ⊆ 4H . If
τ(s1, . . . , sn) 4H t, then there is some τ(t1, . . . , tn) 4o t with si 4H ti. By induction hypothesis
ti 4H si for i = 1, 2. Hence τ(t1, . . . , tn) 4H τ(s1, . . . , sn). Symmetry of 4o implies t 4o

τ(t1, . . . , tn), and hence from t 4H τ(t1, . . . , tn), we derive t 4∗H τ(s1, . . . , sn).

Lemma C.3. If 4 is symmetric (i.e. it is an equivalence relation), then the claims of Lemma
4.3 also hold for 4∗H instead of 4H .

Proof. That 4∗H is operator-respecting follows by induction on the formation of the transitive
closure, since 4H is operator respecting. That 4∗H is stable under value-substitutions also follows
by an induction on the formation of the transitive closure. The other claims can now be easily
transferred to the transitive closure.

Simulation in the Call-by-Value Lambda-Calculus with AMB 17

C.2 Precongruence of Bisimulation for Should-Convergence

In this section we present a proof for soundness of should-bisimulation, i.e. 'o⇓ ⊆ ∼LCA. The
goal in the following is to show that the candidate relation 4⇓H derived from '⇓ can be treated
using the method of Howe to prove soundness of the applicative simulations. In particular we
exploit the transitive-closure extension as mentioned in [8] and presented in [22].

The following lemma is straight-forward.

Lemma C.4. '⇓ ⊆ ≈↓ and '⇓ ⊆ ≈↑ ⊆ ∼LCA

Proof. The inclusion '⇓ ⊆ ≈↓ holds, since '⇓ is F↓-dense and since '⇓ is symmetric. The
inclusion '⇓ ⊆ ≈↑ holds, since '⇓ is F↑-dense and since '⇓ is symmetric. The inclusion
≈↑ ⊆ ∼LCA follows from Theorem 4.15

We have already proved that 4o
↓ is a precongruence (Corollary B.7). This will be required

for the transfer of may-divergence over the candidate relation.

Definition C.5. The candidate relation 4⇓H is defined w.r.t. the relation '⇓.

Lemma C.6. 4⇓H ⊆ 4o
↓ ∩ <o

↓.

Proof. We know that 4o
↓ is a precongruence from Corollary B.7, hence this also holds for <o

↓.
To show that s 4⇓H t =⇒ s 4o

↓ t, we use induction on the structure of s. In the case s = x the
implication follows from the definition of the candidate and from Lemma C.4. If s = τ(s1, . . . , sn),
there is some τ(t1, . . . , tn) 'o⇓ t with si 4⇓H ti for all i. The induction hypothesis implies si 4o

↓ ti
for all i, and the precongruence property of 4o

↓ shows τ(s1, . . . , sn) 4o
↓ τ(t1, . . . , tn). Transitivity

of 4o
↓ and 'o⇓ ⊆ 4o

↓ now shows s = τ(s1, . . . , sn) 4o
↓ t. The proof for <o

↓ is similar.

Proposition C.7. Let s, t be closed expressions, s 4⇓H t and s↓λx.s′. Then there is some λx.t′

such that t↓λx.t′ and s′ 4⇓H t′.

Proof. The proof is by induction on the length of the reduction of s↓λx.s′.

– If s = λx.s′, then there is some closed λx.t′ with s′ 4⇓H t′ and λx.t′ '⇓ t. The latter implies
that there is some closed λx.t′′ with t↓λx.t′′ and t′ 'o⇓ t′′, and so s′ 4⇓H t′′ by Lemma 4.3
(4).

– Case s = amb s1 s2, and s↓λx.s′. Then there is some closed expression amb t1 t2 '⇓ t with
si 4⇓H ti for i = 1, 2. W.l.o.g. let s1↓λx.s′. Then by induction, there is some λx.t′ with
t1↓λx.t′ and s′ 4⇓H t′. Obviously, also amb t1 t2↓λx.t′. From amb t1 t2 '⇓ t, we obtain that
there is some λx.t′′ with t↓λx.t′′ and t′ 'o⇓ t′′, which implies s′ 4⇓H t′′ by Lemma 4.3 (4).

– If s = (s1 s2), then there is some closed t′ = (t′1 t′2) '⇓ t with si 4⇓H t′i for

i = 1, 2. Since (s1 s2)↓λx.s′ there is a reduction sequence (s1 s2)
LCA,∗−−−−→ (λx.s′1) s2

LCA,∗−−−−→
(λx.s′1) (λx.s′2)

LCA−−−→ s′1[λx.s
′
2/x]

LCA,∗−−−−→ λx.s′ such that si↓λx.s′i for i = 1, 2. By induc-
tion, there are expressions λx.t′′i with t′i↓λx.t′′i and s′i 4⇓H t′′i . Lemma 4.3 (5) now shows
s′1[λx.s

′
2/x] 4⇓H t′′1[λx.t′′2/x]. Now we can again use the induction hypothesis which shows

that there is some λx.t′′ with t′′1[λx.t′′2/x]↓λx.t′′ and s′ 4⇓H t′′. The relation (t′1 t
′
2) '⇓ t

implies that t↓λx.t0 with t′′ 'o⇓ t0, and hence s′ 4⇓H t0 by Lemma 4.3 (4).

Proposition C.8. Let s, t be closed, s 4⇓H t and s↑. Then also t↑.

Proof. The proof is by induction on the number of reductions of s to a must-divergent expression,
and on the size of expressions as a second measure.

– The base case is that s⇑. Then Lemma C.6 shows t⇑.

18 Manfred Schmidt-Schauß and David Sabel

– Let s = amb s1 s2 with s↑. Then there is some closed expression t′ = amb t1 t2 with si 4⇓H ti
for i = 1, 2 and amb t1 t2 '⇓ t. It follows that s1↑ as well as s2↑. Applying the induction
hypothesis shows that t1↑ as well as t2↑, and hence (amb t1 t2)↑. From amb t1 t2 '⇓ t we
obtain t↑.

– Let s = (s1 s2) with s↑. Then there is some closed expression t′ = (t1 t2) '⇓ t and si 4⇓H ti
for i = 1, 2. There are several cases:

1. If (s1 s2)
LCA,∗−−−−→ (s′1 s2) and s′1⇑, then s1↑ and by the induction hypothesis also t1↑, and

hence t′↑, which implies t↑.
2. If (s1 s2)

LCA,∗−−−−→ (λx.s′1) s2
LCA,∗−−−−→ (λx.s′1) s

′
2 and s′2⇑, then s2↑ and by induction hypoth-

esis also t2↑, and hence t′↑, which implies t↑.
3. If (s1 s2)

LCA,∗−−−−→ (λx.s′1) s2
LCA,∗−−−−→ (λx.s′1) (λx.s′2)

LCA,∗−−−−→ s′1[λx.s
′
2/x]

LCA,∗−−−−→ s0 where
s0⇑. Then si↓λx.s′i for i = 1, 2 and by Proposition C.7 there are reductions ti↓λx.t′i for
i = 1, 2 with si 4⇓H ti. Thus s′1[λx.s

′
2/x] 4⇓H t′1[λx.t

′
2/x], and hence by the induction

hypothesis t′1[λx.t
′
2/x]↑. Thus (t1 t2)↑, and from (t1 t2) '⇓ t we obtain t↑.

Now we make use of the transitive closure trick explained in [22].
Let 4∗⇓H be the transitive closure of 4⇓H .

Proposition C.9. The claims of Propositions C.7 and 4.13 also hold for 4∗⇓H .

Proof. By induction on the construction of the transitive closure.

Proposition C.10. (4∗⇓H)c satisfies the fixpoint conditions of '⇓.

Proof. This follows from Proposition C.9 and from the symmetry of 4∗⇓H proved in Lemma C.2.

Theorem C.11. The relation '⇓ is a congruence on closed expressions and 'o⇓ is a congruence
on all expressions.

Proof. We already have '⇓ ⊆ 4c
⇓H ⊆ (4∗⇓H)c by Lemma 4.3 part 3. By coinduction,

since (4∗⇓H)c satisfies the fixpoint conditions of '⇓, we obtain (4∗⇓H)c ⊆ '⇓, which shows
(4∗⇓H)c = '⇓. Also, since ((4∗⇓H)c)o = 4∗⇓H , the equation (4∗⇓H) = 'o⇓ holds.

Theorem C.12. 'o⇓ is sound for ∼LCA.

Proof. By Theorem Let s 'o⇓ t, and let C be a context such that C[s], C[t] are closed with
C[s]↑. Theorem C.11 shows that C[s] 'o⇓ C[t], and so C[t]↑. The other implication follows from
symmetry of 'o⇓. We also have C[s]↓ ⇐⇒ C[t]↓, which follows from Lemma C.4 and Theorem
B.8.

D Incompleteness of May-Divergence Simulation in LCA

We argue for incompleteness of 4↑. The idea is to construct an ≤↑-ascending chain of expressions
Bi with limit A, such that the infinite choice ofBi is contextually equivalent with A, which cannot
be detected by the simulation. First we define expressions and a series of expressions, recursively:

– A = choice Ω (λx .A).
– B0 = Top, Bi+1 = λx.choice Ω Bi ;
– B = choice Ω (choice B0 (choice B1 . . .)).

Eliminating the recursion, we get the following non-recursive definitions:

– A = Y (λa.choice Ω (λx .a)).
– First define the recursive function b = λbi .choice bi (b λx .choice Ω bi) with the intention

to define B as choice Ω (b Top). Then:
B = choice Ω ((Y λb.λbi .choice bi (b λx .choice Ω bi)) Top)

Simulation in the Call-by-Value Lambda-Calculus with AMB 19

Lemma D.1.

1. Top ≈↓ A ≈↓ Bi for all i.
2. Top ≈↓ B.
3. Bi <↑ A for all i.

Proof. Item (1) is shown using simulation for may-convergence (see Theorem 3.6). The relations
A ≈↓ Top and Top ≈↓ choice Ω Top hold. Also, Top ≈↓ λx .choice Ω Top by applying simulation.
Using that ≈↓ is a congruence, item (1) follows. Also B ≈↓ Top holds using simulation in both
directions, which follows from item (1).

Item (3) holds using simulation for may-divergence, using the previous items, and since
simulation 4↑ is sound for ≤↑ (see Theorem 3.6). The other direction does not hold, since A↑,
but Bi⇓.

The following context lemma in LCA holds:

Lemma D.2. Let s, t be closed LCA-expressions.

1. If for all closed evaluation contexts E: E[s]↓ =⇒ E[t]↓, then s ≤↓ t.
2. If s ∼↓ t and for all closed evaluation contexts E: E[s]↑ =⇒ E[t]↑, then s ≤↑ t.

Proof. The proof is a simple variant of the context lemma proofs using induction on the length
and size of multicontexts, which is unproblematic since s, t are closed.

Lemma D.3. A ∼LCA B.

Proof. A ≤LCA B follows from Lemma D.1 using simulation for may-divergence. (Note that
≤LCA = ≤↓ ∩(≤↑)−1.) The other direction B ≤LCA A requires an application of the context
lemma D.2. Let E[A]↑ for some closed evaluation context E. Then there is a reduction of length
n to a must-divergent expression.

We mimic this reduction for E[B]. If the first choice of A is Ω, then we do the same for
B, and obtain equal expressions. If the first choice is λx.A, then we select Bn+1 for B. Thus

we have to compare E[λx.A] and E[Bn+1]
LCA,∗−−−−→ E[λx.choice Ω Bn]. Generally, we have a

reduction E[A]
LCA−−−→ C1[A

′
1, . . . , A

′
k]

LCA−−−→ . . .
LCA−−−→ Cn[A′′1, . . . A

′′
m]⇑, where the expressions A′i

and A′′i are either Ω or λx.A. For E[λx.choice Ω Bn] we mimic the E[A]-reduction by either
using the same reduction, or, in the case that ((λx.A) r) has to be beta-reduced, by either also
choosing Ω at the according position, or by choosing Bji , where ji ≥ 1. With this construction

we derive a reduction E[λx.Bn+1]
LCA−−−→ Cn[D1, . . . , Dm] where Di = Ω if A′′i = Ω; or Di = Bji

for some ji ≥ 1 if A′′i = λx.A. Note that A′′i ∼↓ Di by Lemma D.1 (since also A ∼↓ λx.A), and
thus Cn[A′′1, . . . , A

′′
m] ∼↓ Cn[D1, . . . , Dm]. Thus Cn[A′′1, . . . , A

′′
m]⇑ implies Cn[D1, . . . , Dm]⇑, and

hence E[B]↑. This holds for all E, hence by the context lemma: B ≤LCA A.

Proposition D.4. B 4↑ A holds.

Proposition D.5. A 64↑ B. Hence 4↑ and ≈↑ are incomplete.

Proof. Should-similarity requires that A 4↑ Bi for some i. This in turn requires that A 4↑ Bi−1,
and so it is sufficient to refute A 4↑ B0, which again requires A 4↑ Top, which does not hold

Comparing s, t for ≤↑, the incompleteness of 4↑ cannot appear if t reduces to only finitely
many abstractions.

Lemma D.6. If s is a closed abstraction and t is a closed expression such that s ≤↑ t, and
for some n ≥ 2 there is a set T := {t1, . . . , tn} of closed expression, such that t↓λx.t′ implies
λx.t′ ∈ T . Then there is some i with s ≤↑ ti.

Proof. Suppose this is false. Then there are contexts C1, . . . , Cn, such that Ci[s], Ci[ti]
are closed for all i, and for all i = 1, . . . , n: Ci[s]↑ and Ci[ti]⇓. The context C =
(λx.amb C1[x] (amb . . . (amb Cn−1[x] Cn[x]))) [·] has the property: C[s]↑, but C[t]⇓, which is
a contradiction.

