Abstract
This paper presents the mechanization of a process algebra for Mobile Ad hoc Networks and Wireless Mesh Networks, and the development of a compositional framework for proving invariant properties. Mechanizing the core process algebra in Isabelle/HOL is relatively standard, but its layered structure necessitates special treatment. The control states of reactive processes, such as nodes in a network, are modelled by terms of the process algebra. We propose a technique based on these terms to streamline proofs of inductive invariance. This is not sufficient, however, to state and prove invariants that relate states across multiple processes (entire networks). To this end, we propose a novel compositional technique for lifting global invariants stated at the level of individual nodes to networks of nodes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bengtson, J., Parrow, J.: Psi-calculi in Isabelle. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 99–114. Springer, Heidelberg (2009)
Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 116–130. Springer, Heidelberg (2011)
Bourke, T.: Mechanization of the Algebra for Wireless Networks (AWN). In: Archive of Formal Proofs (2014), http://afp.sf.net/entries/AWN.shtml
Bourke, T., van Glabbeek, R.J., Höfner, P.: A mechanized proof of loop freedom of the (untimed) AODV routing protocol. See authors’ webpages (2014)
Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: Verifying safety properties with the TLA + proof system. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 142–148. Springer, Heidelberg (2010)
Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A., Portmann, M., Tan, W.L.: A process algebra for wireless mesh networks used for modelling, verifying and analysing AODV. Technical Report 5513, NICTA (2013), http://arxiv.org/abs/1312.7645
Feliachi, A., Gaudel, M.-C., Wolff, B.: Isabelle/Circus: A process specification and verification environment. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 243–260. Springer, Heidelberg (2012)
Fokkink, W., Groote, J.F., Reniers, M.: Process algebra needs proof methodology. EATCS Bulletin 82, 109–125 (2004)
Göthel, T., Glesner, S.: An approach for machine-assisted verification of Timed CSP specifications. Innovations in Systems and Software Engineering 6(3), 181–193 (2010)
Heyd, B., Crégut, P.: A modular coding of UNITY in COQ. In: Goos, G., Hartmanis, J., van Leeuwen, J., von Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 251–266. Springer, Heidelberg (1996)
Hirschkoff, D.: A full formalisation of π-calculus theory in the Calculus of Constructions. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 153–169. Springer, Heidelberg (1997)
Kammüller, F., Wenzel, M., Paulson, L.C.: Locales - A sectioning concept for Isabelle. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 149–165. Springer, Heidelberg (1999)
Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer (1995)
Müller, O.: A Verification Environment for I/O Automata Based on Formalized Meta-Theory. PhD thesis, TU München (1998)
Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)
Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J. Computer Security 6(1-2), 85–128 (1998)
Perkins, C.E., Belding-Royer, E.M., Das, S.R.: Ad hoc on-demand distance vector (AODV) routing. RFC 3561 (Experimental), Network Working Group (2003)
de Roever, W.-P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Noncompositional Methods. Cambridge Tracts in Theor. Comp. Sci., vol. 54. CUP (2001)
Sutcliffe, G.: The TPTP problem library and associated infrastructure: The FOF and CNF parts, v3.5.0. J. Automated Reasoning 43(4), 337–362 (2009)
Tej, H., Wolff, B.: A corrected failure divergence model for CSP in Isabelle/HOL. In: Fitzgerald, J.S., Jones, C.B., Lucas, P. (eds.) FME 1997. LNCS, vol. 1313, pp. 318–337. Springer, Heidelberg (1997)
Wenzel, M.: Isabelle/jEdit – A prover IDE within the PIDE framework. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 468–471. Springer, Heidelberg (2012)
Wenzel, M.: Shared-memory multiprocessing for interactive theorem proving. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 418–434. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bourke, T., van Glabbeek, R.J., Höfner, P. (2014). Showing Invariance Compositionally for a Process Algebra for Network Protocols. In: Klein, G., Gamboa, R. (eds) Interactive Theorem Proving. ITP 2014. Lecture Notes in Computer Science, vol 8558. Springer, Cham. https://doi.org/10.1007/978-3-319-08970-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-08970-6_10
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08969-0
Online ISBN: 978-3-319-08970-6
eBook Packages: Computer ScienceComputer Science (R0)