Abstract
Machine-checked proofs are becoming ever-larger, presenting an increasing maintenance challenge. Isabelle’s most popular language interface, Isar, is attractive for new users, and powerful in the hands of experts, but has previously lacked a means to write automated proof procedures. This can lead to more duplication in large proofs than is acceptable. In this paper we present Eisbach, a proof method language for Isabelle, which aims to fill this gap by incorporating Isar language elements, thus making it accessible to existing users. We describe the language and the design principles on which it was developed. We evaluate its effectiveness by implementing some tactics widely-used in the seL4 verification stack, and report on its strengths and limitations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bourke, T., Daum, M., Klein, G., Kolanski, R.: Challenges and experiences in managing large-scale proofs. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 32–48. Springer, Heidelberg (2012)
Chlipala, A.: Mostly-automated verification of low-level programs in computational separation logic. ACM SIGPLAN Notices 46(6), 234 (2011)
Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable refinement. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 167–182. Springer, Heidelberg (2008)
Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 85–95. Springer, Heidelberg (2000)
Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J. Formalized Reasoning 3(2) (2010)
Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof automation less ad hoc. J. Funct. Program. 23(4), 357–401 (2013)
Gordon, M.J., Milner, R., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78. Springer, Heidelberg (1979)
Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: Automatic verified abstraction of C. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 99–115. Springer, Heidelberg (2012)
Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R., Heiser, G.: Comprehensive formal verification of an OS microkernel. ACM Transactions on Computer Systems (TOCS) (to appear)
Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal verification of an OS kernel. In: SOSP, Big Sky, MT, USA, pp. 207–220. ACM (October 2009)
Murray, T., Matichuk, D., Brassil, M., Gammie, P., Klein, G.: Noninterference for operating system kernels. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 126–142. Springer, Heidelberg (2012)
Paulson, L.C.: Isabelle: the next 700 theorem provers. In: Odifreddi, P. (ed.) Logic and Computer Science. Academic Press (1990)
Wenzel, M., Chaieb, A.: SML with antiquotations embedded into Isabelle/Isar. In: Carette, J., Wiedijk, F. (eds.) Workshop on Programming Languages for Mechanized Mathematics (PLMMS 2007), Hagenberg, Austria (June 2007)
Wenzel, M.: Isabelle/Isar—a versatile environment for human-readable formal proof documents. PhD thesis, Technische Universität München (2002)
Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600. Springer, Heidelberg (2006)
Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac: a monad for typed tactic programming in Coq. In: Morrisett, G., Uustalu, T. (eds.) ICFP. ACM (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Matichuk, D., Wenzel, M., Murray, T. (2014). An Isabelle Proof Method Language. In: Klein, G., Gamboa, R. (eds) Interactive Theorem Proving. ITP 2014. Lecture Notes in Computer Science, vol 8558. Springer, Cham. https://doi.org/10.1007/978-3-319-08970-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-08970-6_25
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08969-0
Online ISBN: 978-3-319-08970-6
eBook Packages: Computer ScienceComputer Science (R0)