Abstract
We describe a general method for verifying inequalities between real-valued expressions, especially the kinds of straightforward inferences that arise in interactive theorem proving. In contrast to approaches that aim to be complete with respect to a particular language or class of formulas, our method establishes claims that require heterogeneous forms of reasoning, relying on a Nelson-Oppen-style architecture in which special-purpose modules collaborate and share information. The framework is thus modular and extensible. A prototype implementation shows that the method is promising, complementing techniques that are used by contemporary interactive provers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akbarpour, B., Paulson, L.C.: MetiTarski: An Automatic Prover for the Elementary Functions. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.) AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 217–231. Springer, Heidelberg (2008)
Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime number theorem. ACM Trans. Comput. Logic 9(1), 2 (2007)
Avigad, J., Friedman, H.: Combining decision procedures for the reals. Log. Methods Comput. Sci. 2(4), 4:4, 42 (2006)
Avis, D.: Living with lrs. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 47–56. Springer, Heidelberg (2000)
Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisability modulo theories. In: Biere, A., et al. (eds.) Handbook of Satisability, pp. 825–885. IOS Press (2008)
Basu, S., Pollack, R., Roy, M.: Algorithms in real algebraic geometry. Springer (2003)
Billingsley, P.: Probability and measure, 3rd edn. John Wiley & Sons Inc. (1995)
Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT Solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 116–130. Springer, Heidelberg (2011)
Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press (2004)
Chaieb, A., Nipkow, T.: Proof synthesis and reflection for linear arithmetic. J. Autom. Reasoning 41(1), 33–59 (2008)
Contejean, E.: A Certified AC Matching Algorithm. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 70–84. Springer, Heidelberg (2004)
de Moura, L., Bjørner, N.: Efficient E-Matching for SMT Solvers. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg (2007)
de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)
Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer, Heidelberg (1996)
Garling, D.J.H.: Inequalities: a journey into linear analysis. Cambridge University Press, Cambridge (2007)
Gao, S., Avigad, J., Clarke, E.M.: Delta-complete decision procedures for satisfiability over the reals. In: Gramlich, B., et al. (eds.) IJCAR, pp. 286–300 (2012)
Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1988), Reprint of the 1952 edition
Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)
Harrison, J.: Verifying Nonlinear Real Formulas Via Sums of Squares. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer, Heidelberg (2007)
Hunt Jr., W.A., Krug, R.B., Moore, J.: Linear and nonlinear arithmetic in ACL2. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 319–333. Springer, Heidelberg (2003)
Jones, C.N., Kerrigan, E.C., Maciejowski, J.M.: Equality set projection: A new algorithm for the projection of polytopes in halfspace representation. Technical report, Department of Engineering, University of Cambridge (March 2004)
McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 295–314. Springer, Heidelberg (2005)
Meng, J., Paulson, L.: Lightweight relevance filtering for machine-generated resolution problems. J. Applied Logic 7(1), 41–57 (2009)
Moore, R., Kearfott, R., Cloud, M.: Introduction to interval analysis. Society for Industrial and Applied Mathematics (SIAM) (2009)
Moses, J.: Algebraic simplification: A guide for the perplexed. Communications of the ACM 14, 527–537 (1971)
Nelson, G., Oppen, D.: Simplification by cooperating decision procedures. ACM Transactions of Programming Languages and Systems 1, 245–257 (1979)
Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)
Polya, G.: How to solve it. Princeton University Press, Princeton (1945)
Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., et al. (eds.) ESCoR: Empirically Successful Computerized Reasoning 2006. CEUR Workshop Proceedings, pp. 18–33 (2006)
Pugh, W.: The omega test: a fast and practical integer programming algorithm for dependence analysis. Communications of the ACM 8, 4–13 (1992)
Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons (1986)
Ziegler, G.: Lectures on polytopes. Springer (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Avigad, J., Lewis, R.Y., Roux, C. (2014). A Heuristic Prover for Real Inequalities. In: Klein, G., Gamboa, R. (eds) Interactive Theorem Proving. ITP 2014. Lecture Notes in Computer Science, vol 8558. Springer, Cham. https://doi.org/10.1007/978-3-319-08970-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-08970-6_5
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08969-0
Online ISBN: 978-3-319-08970-6
eBook Packages: Computer ScienceComputer Science (R0)