Abstract
In the information era, enormous amounts of data have become available on hand to decision makers. Big data refers to datasets that are not only big, but also high in variety and velocity, which makes them difficult to handle using traditional tools and techniques. Due to the rapid growth of such data, solutions need to be studied and provided in order to handle and extract value and knowledge from these datasets. Furthermore, decision makers need to be able to gain valuable insights from such varied and rapidly changing data, ranging from daily transactions to customer interactions and social network data. Such value can be provided using big data analytics, which is the application of advanced analytics techniques on big data. This paper aims to analyze some of the different analytics methods and tools which can be applied to big data, as well as the opportunities provided by the application of big data analytics in various decision domains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adams, M.N.: Perspectives on Data Mining. International Journal of Market Research 52(1), 11–19 (2010)
Asur, S., Huberman, B.A.: Predicting the Future with Social Media. In: ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 1, pp. 492–499 (2010)
Bakshi, K.: Considerations for Big Data: Architecture and Approaches. In: Proceedings of the IEEE Aerospace Conference, pp. 1–7 (2012)
Cebr: Data equity, Unlocking the value of big data. in: SAS Reports, pp. 1–44 (2012)
Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J.M., Welton, C.: MAD Skills: New Analysis Practices for Big Data. Proceedings of the ACM VLDB Endowment 2(2), 1481–1492 (2009)
Cuzzocrea, A., Song, I., Davis, K.C.: Analytics over Large-Scale Multidimensional Data: The Big Data Revolution! In: Proceedings of the ACM International Workshop on Data Warehousing and OLAP, pp. 101–104 (2011)
Economist Intelligence Unit: The Deciding Factor: Big Data & Decision Making. In: Capgemini Reports, pp. 1–24 (2012)
Elgendy, N.: Big Data Analytics in Support of the Decision Making Process. MSc Thesis, German University in Cairo, p. 164 (2013)
EMC: Data Science and Big Data Analytics. In: EMC Education Services, pp. 1–508 (2012)
He, Y., Lee, R., Huai, Y., Shao, Z., Jain, N., Zhang, X., Xu, Z.: RCFile: A Fast and Space-efficient Data Placement Structure in MapReduce-based Warehouse Systems. In: IEEE International Conference on Data Engineering (ICDE), pp. 1199–1208 (2011)
Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F.B., Babu, S.: Starfish: A Self-tuning System for Big Data Analytics. In: Proceedings of the Conference on Innovative Data Systems Research, pp. 261–272 (2011)
Kubick, W.R.: Big Data, Information and Meaning. In: Clinical Trial Insights, pp. 26–28 (2012)
Lee, R., Luo, T., Huai, Y., Wang, F., He, Y., Zhang, X.: Ysmart: Yet Another SQL-to-MapReduce Translator. In: IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 25–36 (2011)
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H.: Big Data: The Next Frontier for Innovation, Competition, and Productivity. In: McKinsey Global Institute Reports, pp. 1–156 (2011)
Mouthami, K., Devi, K.N., Bhaskaran, V.M.: Sentiment Analysis and Classification Based on Textual Reviews. In: International Conference on Information Communication and Embedded Systems (ICICES), pp. 271–276 (2013)
Plattner, H., Zeier, A.: In-Memory Data Management: An Inflection Point for Enterprise Applications. Springer, Heidelberg (2011)
Russom, P.: Big Data Analytics. In: TDWI Best Practices Report, pp. 1–40 (2011)
Sanchez, D., Martin-Bautista, M.J., Blanco, I., Torre, C.: Text Knowledge Mining: An Alternative to Text Data Mining. In: IEEE International Conference on Data Mining Workshops, pp. 664–672 (2008)
Serrat, O.: Social Network Analysis. Knowledge Network Solutions 28, 1–4 (2009)
Shen, Z., Wei, J., Sundaresan, N., Ma, K.L.: Visual Analysis of Massive Web Session Data. In: Large Data Analysis and Visualization (LDAV), pp. 65–72 (2012)
Song, Z., Kusiak, A.: Optimizing Product Configurations with a Data Mining Approach. International Journal of Production Research 47(7), 1733–1751 (2009)
TechAmerica: Demystifying Big Data: A Practical Guide to Transforming the Business of Government. In: TechAmerica Reports, pp. 1–40 (2012)
Van der Valk, T., Gijsbers, G.: The Use of Social Network Analysis in Innovation Studies: Mapping Actors and Technologies. Innovation: Management, Policy & Practice 12(1), 5–17 (2010)
Zeng, D., Hsinchun, C., Lusch, R., Li, S.H.: Social Media Analytics and Intelligence. IEEE Intelligent Systems 25(6), 13–16 (2010)
Zhang, L., Stoffel, A., Behrisch, M., Mittelstadt, S., Schreck, T., Pompl, R., Weber, S., Last, H., Keim, D.: Visual Analytics for the Big Data Era—A Comparative Review of State-of-the-Art Commercial Systems. In: IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 173–182 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Elgendy, N., Elragal, A. (2014). Big Data Analytics: A Literature Review Paper. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2014. Lecture Notes in Computer Science(), vol 8557. Springer, Cham. https://doi.org/10.1007/978-3-319-08976-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-08976-8_16
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08975-1
Online ISBN: 978-3-319-08976-8
eBook Packages: Computer ScienceComputer Science (R0)