Abstract
Entity resolution of geographical references is essential for the analysis of spatial temporal information when data come from heterogeneous sources. In the ConTraffic project we work on the analysis of trajectory of moving objects (e.g. commercial containers and vessels) and, as part of data processing step, the right location for textual references must be determined. In this paper we present an application of Bayesian networks that leverage the information of already resolved references in order to estimate the right entity corresponding to a geographical location. Contextual information of objects that have followed similar trajectories is used as well. Our approach is suitable to perform entity resolution efficiently even when the database contains millions of movements. The results we obtained prove that our method is useful in cases where string similarity methods are unable to provide a solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mazzola, L., Eynard, D., Mazza, R.: GVIS: a framework for graphical mashups of heterogeneous sources to support data interpretation. In: 3rd IEEE Conference on Human System Interactions, HSI 2010, pp. 578–584 (2010)
Varfis, A., Kotsakis, E., Tsois, A., Donati, A.V., Sjachyn, M., Camossi, E., Villa, P., Dimitrova, T., Pellissier, M.: ConTraffic: Maritime container traffic anomaly detection. In: MAD 2011 Workshop Proceedings, p. 113 (2011)
US Government Printing Office, http://www.gpo.gov/fdsys/granule/CFR-2012-title19-vol1/CFR-2012-title19-vol1-sec4-7d/content-detail.html (last accessed on April 10, 2013)
Villa, P., Camossi, E.: A description logic approach to discover suspicious itineraries from maritime container trajectories. In: Claramunt, C., Levashkin, S., Bertolotto, M. (eds.) GeoS 2011. LNCS, vol. 6631, pp. 182–199. Springer, Heidelberg (2011)
Camossi, E., Villa, P., Mazzola, L.: Semantic-based Anomalous Pattern Discovery in Moving Object Trajectories. arXiv preprint arXiv:1305.1946 (2013)
International Organization for Standardization. ISO 6346:1995. Freight Containers–Coding, identification and marking, http://www.iso.org/iso/catalogue_detail?csnumber=20453
United Nations Code for Trade and Transport Locations, http://www.unece.org/cefact/locode/welcome.html (last accessed on April 12, 2013)
Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. ACM Transactions on Database Systems (TODS) 25(1), 1–42 (2000)
Sehgal, V., Getoor, L., Viechnicki, P.D.: Entity resolution in geospatial data integration. In: Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems, pp. 83–90. ACM (2006)
Kang, H., Sehgal, V., Getoor, L.: GeoDDupe: a novel interface for interactive entity resolution in geospatial data. In: 11th International Conference on Information Visualization, IV 2007, pp. 489–496. IEEE (2007)
Martins, B., Anastácio, I., Calado, P.: A machine learning approach for resolving place references in text. In: Geospatial Thinking, pp. 221–236. Springer, Heidelberg (2010)
Krumm, J., Horvitz, E.: Predestination: Inferring destinations from partial trajectories. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 243–260. Springer, Heidelberg (2006)
Abdessalem, T., Moreira, J., Ribeiro, C.: Movement query operations for spatio-temporal databases. Proc. 17emes Journées Bases de Données Avancées (2001)
Winkler, W.E.: Overview of Record Linkage and Current Research Directions. Research Report Series, RRS (2006)
Kondrak, G.: N-gram similarity and distance. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 115–126. Springer, Heidelberg (2005)
Gooi, C.H., Allan, J.: Cross-document coreference on a large scale corpus. In: Susan Dumais, D.M., Roukos, S. (eds.) HLT-NAACL 2004: Main Proceedings, Association for Computational Linguistics, Boston, Massachusetts, USA, pp. 9–16 (2004)
Li, Y., Wang, H., Gao, H.: Efficient entity resolution based on sequence rules. In: Shen, G., Huang, X. (eds.) CSIE 2011, Part I. CCIS, vol. 152, pp. 381–388. Springer, Heidelberg (2011)
Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. ACM Transactions on Knowledge Discovery from Data 1(1), 1–36 (2007)
Singla, P., Domingos, P.: Entity resolution with markov logic. In: ICDM, pp. 572–582. IEEE Computer Society Press (2006)
Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae Investigationes 30(1), 3–26 (2007)
Rao, D., McNamee, P., Dredze, M.: Entity linking: Finding extracted entities in a knowledge base. In: Poibeau, T., Saggion, H., Piskorski, J., Yangarber, R. (eds.) Multi-source, Multilingual Information Extraction and Summarization. Theory and Applications of Natural Language Processing, pp. 93–115. Springer, Heidelberg (2013)
Nguyen, N.T.H., Tsuruoka, Y.: Extracting bacteria biotopes with semi-supervised named entity recognition and coreference resolution. In: Proceedings of the BioNLP Shared Task 2011 Workshop, BioNLP Shared Task 2011, pp. 94–101. Association for Computational Linguistics, Stroudsburg (2011)
Zhang, L., Vaisenberg, R., Mehrotra, S., Kalashnikov, D.V.: Video entity resolution: Applying er techniques for smart video surveillance. In: PerCom Workshops, pp. 26–31 (2011)
Martins, B., Manguinhas, H., Borbinha, J.: Extracting and exploring the geo-temporal semantics of textual resources. In: 2008 IEEE International Conference on Semantic Computing, pp. 1–9 (2008)
Mazzola, L., Tsois, A., Dimitrova, T., Camossi, E.: Contextualisation of Geographical Scraped Data to Support Human Judgment and Classification. In: European Intelligence and Security Informatics Conference (EISIC) 2013, August 12-14, pp. 151–154 (2013) doi: 10.1109/EISIC.2013.33
Cao, H., Wolfson, O.: Nonmaterialized motion information in transport networks. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 173–188. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Mazzola, L., Chahuara, P., Tsois, A., Pedone, M. (2014). Resolution of Geographical String Name through Spatio-Temporal Information. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2014. Lecture Notes in Computer Science(), vol 8556. Springer, Cham. https://doi.org/10.1007/978-3-319-08979-9_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-08979-9_38
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08978-2
Online ISBN: 978-3-319-08979-9
eBook Packages: Computer ScienceComputer Science (R0)