Skip to main content

Superresolution MUSIC Based on Marčenko-Pastur Limit Distribution Reduces Uncertainty and Improves DNA Gene Expression-Based Microarray Classification

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8452))

  • 996 Accesses

Abstract

We introduce a bootstrap root MUSIC (BRM) technique, which employs superresolution multisignal classification to reduce high-dimensional sets of genes from expression microarrays to low-dimensional sets used in supervised classification analysis. During BRM, the Marčenko-Pastur limit distribution of eigenvalues for the array-by-array gene expression covariance matrix was used for determining the eigenvalue cutoff for the noise subspace. Classifier results were compared with and without replacing gene expression values with the inverse of the distance to class-specific noise eigenspace for each microarray. Nine gene expression datasets were used for classification, and results of using BRM were compared with classification results based on use of random and best ranked N genes. On average, BRM resulted in greater classification of randomly selected genes when compared with direct use of randomly selected genes for classifier input. In addition, when BRM was applied to best ranked N genes, the interquartile ranges of accuracy were smaller when compared with direct input of best ranked genes into classifiers. Overall, BRM can optimally be used with 128 or 256 best ranked markers, requiring less extensive filtering to identify smaller sets of predictors. Use of a larger set of markers with BRM can help minimize the effect of concept drift over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambroise, C., McLachlan, G.J.: Selection bias in gene extraction on the basis of microarray gene-expression data. PNAS 99(10), 6562–6566 (2002)

    Article  MATH  Google Scholar 

  2. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1137–1145 (1995)

    Google Scholar 

  3. Reddi, S.S.: Multiple source location-a digital approach. IEEE Trans. Aerosp. Electron. Syst. AES–15(1), 95–105 (1979)

    Article  Google Scholar 

  4. Schmidt, R.O.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. AP–34(3), 276–280 (1986)

    Article  Google Scholar 

  5. Kim, K.-T., Seo, D.K., Kim, H.-T.: Efficient radar target recognition using the MUSIC algorithm and invariant features. IEEE Trans. Antennas Propag. 50(3), 325–337 (2002)

    Article  Google Scholar 

  6. Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., Sturla, L.M., Angelo, M., McLaughlin, M.E., Kim, J.-Y.H., Goumnerovak, L.C., Blackk, P.M., Lau, C., Allen, J.C., ZagzagI, D., Olson, J.M., Curran, T., Wetmore, C., Biegel, J.A., Poggio, T., Mukherjee, S., Rifkin, R., Califanokk, A., Stolovitzkykk, G., Louis, D.N., Mesirov, J.P., Lander, E.S., Golub, T.R.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(6870), 436–442 (2002)

    Article  Google Scholar 

  7. Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R., Sellers, W.R.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 1(2), 203–209 (2002)

    Article  Google Scholar 

  8. Hedenfalk, I., Duggan, D., Chen, Y., et al.: Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344, 539–548 (2001)

    Article  Google Scholar 

  9. van ’t Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002)

    Article  Google Scholar 

  10. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96(12), 6745–6750 (1999)

    Article  Google Scholar 

  11. Gordon, G.J., Jensen, R.V., Hsiao, L.L., Gullans, S.R., Blumenstock, J.E., Ramaswamy, S., Richards, W.G., Sugarbaker, D.J., Bueno, R.: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 62(17), 4963–5967 (2002)

    Google Scholar 

  12. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression. Science 286, 531–537 (1999)

    Article  Google Scholar 

  13. Armstrong, S.A., Staunton, J.E., Silverman, L.B., Pieters, R., den Boer, M.L., Minden, M.D., Sallan, S.E., Lander, E.S., Golub, T.R., Korsmeyer, S.J.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30(1), 41–47 (2001)

    Article  Google Scholar 

  14. Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., C. Peterson, C.R., Meltzer, R.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7, 673–679 (2001)

    Article  Google Scholar 

  15. Marčenko, V.A., Pastur, L.A.: Mat. Sb., (N.S.) 72(114), 507–536 (1967)

    Google Scholar 

  16. Kennedy, J., Eberhart, R.C., Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995)

    Google Scholar 

  17. Peterson, L.E.: Classification Analysis of DNA Microarrays. John Wiley and Sons, New York (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif E. Peterson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Peterson, L.E. (2014). Superresolution MUSIC Based on Marčenko-Pastur Limit Distribution Reduces Uncertainty and Improves DNA Gene Expression-Based Microarray Classification. In: Formenti, E., Tagliaferri, R., Wit, E. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2013. Lecture Notes in Computer Science(), vol 8452. Springer, Cham. https://doi.org/10.1007/978-3-319-09042-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09042-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09041-2

  • Online ISBN: 978-3-319-09042-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics