Abstract
We introduce a bootstrap root MUSIC (BRM) technique, which employs superresolution multisignal classification to reduce high-dimensional sets of genes from expression microarrays to low-dimensional sets used in supervised classification analysis. During BRM, the Marčenko-Pastur limit distribution of eigenvalues for the array-by-array gene expression covariance matrix was used for determining the eigenvalue cutoff for the noise subspace. Classifier results were compared with and without replacing gene expression values with the inverse of the distance to class-specific noise eigenspace for each microarray. Nine gene expression datasets were used for classification, and results of using BRM were compared with classification results based on use of random and best ranked N genes. On average, BRM resulted in greater classification of randomly selected genes when compared with direct use of randomly selected genes for classifier input. In addition, when BRM was applied to best ranked N genes, the interquartile ranges of accuracy were smaller when compared with direct input of best ranked genes into classifiers. Overall, BRM can optimally be used with 128 or 256 best ranked markers, requiring less extensive filtering to identify smaller sets of predictors. Use of a larger set of markers with BRM can help minimize the effect of concept drift over time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ambroise, C., McLachlan, G.J.: Selection bias in gene extraction on the basis of microarray gene-expression data. PNAS 99(10), 6562–6566 (2002)
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1137–1145 (1995)
Reddi, S.S.: Multiple source location-a digital approach. IEEE Trans. Aerosp. Electron. Syst. AES–15(1), 95–105 (1979)
Schmidt, R.O.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. AP–34(3), 276–280 (1986)
Kim, K.-T., Seo, D.K., Kim, H.-T.: Efficient radar target recognition using the MUSIC algorithm and invariant features. IEEE Trans. Antennas Propag. 50(3), 325–337 (2002)
Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., Sturla, L.M., Angelo, M., McLaughlin, M.E., Kim, J.-Y.H., Goumnerovak, L.C., Blackk, P.M., Lau, C., Allen, J.C., ZagzagI, D., Olson, J.M., Curran, T., Wetmore, C., Biegel, J.A., Poggio, T., Mukherjee, S., Rifkin, R., Califanokk, A., Stolovitzkykk, G., Louis, D.N., Mesirov, J.P., Lander, E.S., Golub, T.R.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(6870), 436–442 (2002)
Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R., Sellers, W.R.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 1(2), 203–209 (2002)
Hedenfalk, I., Duggan, D., Chen, Y., et al.: Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med. 344, 539–548 (2001)
van ’t Veer, L.J., Dai, H., van de Vijver, M.J., He, Y.D., Hart, A.A., Mao, M., Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T., Schreiber, G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S., Bernards, R., Friend, S.H.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002)
Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96(12), 6745–6750 (1999)
Gordon, G.J., Jensen, R.V., Hsiao, L.L., Gullans, S.R., Blumenstock, J.E., Ramaswamy, S., Richards, W.G., Sugarbaker, D.J., Bueno, R.: Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 62(17), 4963–5967 (2002)
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression. Science 286, 531–537 (1999)
Armstrong, S.A., Staunton, J.E., Silverman, L.B., Pieters, R., den Boer, M.L., Minden, M.D., Sallan, S.E., Lander, E.S., Golub, T.R., Korsmeyer, S.J.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30(1), 41–47 (2001)
Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., C. Peterson, C.R., Meltzer, R.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7, 673–679 (2001)
Marčenko, V.A., Pastur, L.A.: Mat. Sb., (N.S.) 72(114), 507–536 (1967)
Kennedy, J., Eberhart, R.C., Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995)
Peterson, L.E.: Classification Analysis of DNA Microarrays. John Wiley and Sons, New York (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Peterson, L.E. (2014). Superresolution MUSIC Based on Marčenko-Pastur Limit Distribution Reduces Uncertainty and Improves DNA Gene Expression-Based Microarray Classification. In: Formenti, E., Tagliaferri, R., Wit, E. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2013. Lecture Notes in Computer Science(), vol 8452. Springer, Cham. https://doi.org/10.1007/978-3-319-09042-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-09042-9_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09041-2
Online ISBN: 978-3-319-09042-9
eBook Packages: Computer ScienceComputer Science (R0)