Skip to main content

Molecular Docking for Drug Discovery: Machine-Learning Approaches for Native Pose Prediction of Protein-Ligand Complexes

  • Conference paper
  • First Online:
Book cover Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2013)

Abstract

Molecular docking is a widely-employed method in structure-based drug design. An essential component of molecular docking programs is a scoring function (SF) that can be used to identify the most stable binding pose of a ligand, when bound to a receptor protein, from among a large set of candidate poses. Despite intense efforts in developing conventional SFs, which are either force-field based, knowledge-based, or empirical, their limited docking power (or ability to successfully identify the correct pose) has been a major impediment to cost-effective drug discovery. Therefore, in this work, we explore a range of novel SFs employing different machine-learning (ML) approaches in conjunction with physicochemical and geometrical features characterizing protein-ligand complexes to predict the native or near-native pose of a ligand docked to a receptor protein’s binding site. We assess the docking accuracies of these new ML SFs as well as those of conventional SFs in the context of the 2007 PDBbind benchmark datasets on both diverse and homogeneous (protein-family-specific) test sets. We find that the best performing ML SF has a success rate of 80 % in identifying poses that are within 1 Å root-mean-square deviation from the native poses of 65 different protein families. This is in comparison to a success rate of only 70 % achieved by the best conventional SF, ASP, employed in the commercial docking software GOLD. We also observed steady gains in the performance of the proposed ML SFs as the training set size was increased by considering more protein-ligand complexes and/or more computationally-generated poses for each complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lyne, P.D.: Structure-based virtual screening: an overview. Drug Discov. Today 7(20), 1047–1055 (2002)

    Article  Google Scholar 

  2. Cheng, T., Li, X., Li, Y., Liu, Z., Wang, R.: Comparative assessment of scoring functions on a diverse test set. J. Chem. Inf. Model. 49(4), 1079–1093 (2009)

    Article  Google Scholar 

  3. Ashtawy, H.M., Mahapatra, N.R.: A comparative assessment of conventional and machine-learning-based scoring functions in predicting binding affinities of protein-ligand complexes. In: 2011 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 627–630. IEEE (2011)

    Google Scholar 

  4. Ashtawy, H.M., Mahapatra, N.R.: A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 9(5), 1301–1313 (2012)

    Article  Google Scholar 

  5. Ewing, T., Makino, S., Skillman, A., Kuntz, I.: Dock 4.0: search strategies for automated molecular docking of flexible molecule databases. J. Comput. Aided Mol. Des. 15(5), 411–428 (2001)

    Article  Google Scholar 

  6. Wang, R., Lai, L., Wang, S.: Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 16, 11–26 (2002). doi:10.1023/A:1016357811882

    Article  Google Scholar 

  7. Gohlke, H., Hendlich, M., Klebe, G.: Knowledge-based scoring function to predict protein-ligand interactions. J. Mol. Biol. 295(2), 337–356 (2000)

    Article  Google Scholar 

  8. Mooij, W., Verdonk, M.: General and targeted statistical potentials for protein-ligand interactions. Proteins 61(2), 272 (2005)

    Article  Google Scholar 

  9. Jones, G., Willett, P., Glen, R., Leach, A., Taylor, R.: Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267(3), 727–748 (1997)

    Article  Google Scholar 

  10. Gehlhaar, D.K., Verkhivker, G.M., Rejto, P.A., Sherman, C.J., Fogel, D.R., Fogel, L.J., Freer, S.T.: Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem. Biol. 2(5), 317–324 (1995)

    Google Scholar 

  11. Inc., A.S.: The Discovery Studio Software, San Diego, CA (2001) (version 2.0)

    Google Scholar 

  12. Velec, H.F.G., Gohlke, H., Klebe, G.: DrugScore CSD - knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. J. Med. Chem. 48(20), 6296–6303 (2005)

    Article  Google Scholar 

  13. Venkatachalam, C., Jiang, X., Oldfield, T., Waldman, M.: LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model. 21(4), 289–307 (2003)

    Article  Google Scholar 

  14. Jain, A.: Surflex-dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J. Comput. Aided Mol. Des. 21(5), 281–306 (2007)

    Article  Google Scholar 

  15. Rarey, M., Kramer, B., Lengauer, T., Klebe, G.: A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261(3), 470–489 (1996)

    Article  Google Scholar 

  16. Wang, R., Fang, X., Lu, Y., Wang, S.: The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J. Med. Chem. 47(12), 2977–2980 (2004)

    Article  Google Scholar 

  17. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28(1), 235–242 (2000)

    Article  Google Scholar 

  18. Madden, T.: The BLAST sequence analysis tool. In: McEntyre, J., Ostell, J. (eds.) The NCBI Handbook. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda (2002)

    Google Scholar 

  19. Schnecke, V., Kuhn, L.A.: Virtual screening with solvation and ligand-induced complementarity. In: Klebe, G. (ed.) Virtual Screening: An Alternative or Complement to High Throughput Screening?, pp. 171–190. Springer, Amsterdam (2002)

    Google Scholar 

  20. Ballester, P., Mitchell, J.: A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 26(9), 1169 (2010)

    Article  Google Scholar 

  21. BioSolveIT.: LeadIT, St. Augustin, Germany (2012) (version 2.1)

    Google Scholar 

  22. Inc., T.: The SYBYL Software, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA (2006) (version 7.2)

    Google Scholar 

  23. Schrödinger, L.: The Schrödinger Software, New York (2005) (version 8.0)

    Google Scholar 

  24. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001)

    Book  MATH  Google Scholar 

  25. Team, R.D.C.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2010) ISBN 3-900051-07-0

    Google Scholar 

  26. Milborrow, S., Trevor, H., Tibshirani, R.: earth: Multivariate Adaptive Regression Spline Models (2010) (R package version 2.4-5)

    Google Scholar 

  27. Hechenbichler, K.S.K.: kknn: Weighted k-Nearest Neighbors (2010) (R package version 1.0-8)

    Google Scholar 

  28. Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A.: e1071: Miscellaneous Functions of the Department of Statistics (e1071), TU Wien (2010) (R package version 1.5-24)

    Google Scholar 

  29. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  30. Ridgeway, G.: gbm: Generalized Boosted Regression Models (2010) (R package version 1.6-3.1)

    Google Scholar 

  31. Overington, J., Al-Lazikani, B., Hopkins, A.: How many drug targets are there? Nat. Rev. Drug Discovery 5(12), 993–996 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihar R. Mahapatra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ashtawy, H.M., Mahapatra, N.R. (2014). Molecular Docking for Drug Discovery: Machine-Learning Approaches for Native Pose Prediction of Protein-Ligand Complexes. In: Formenti, E., Tagliaferri, R., Wit, E. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2013. Lecture Notes in Computer Science(), vol 8452. Springer, Cham. https://doi.org/10.1007/978-3-319-09042-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09042-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09041-2

  • Online ISBN: 978-3-319-09042-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics