Abstract
This paper describes a superspace method to identify a state-space model and an associated Kalman filter gain from input-output data. Superstate vectors are simply vectors containing input-output measurements, and used directly for the identification. The superstate space is unusual in that the state portion of the Kalman filter becomes completely independent of both the system dynamics and the input and output noise statistics. The system dynamics is entirely carried by the measurement portion of the superstate Kalman filter model. When model reduction is applied, the system dynamics returns to the state portion of the state-space model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Juang, J.-N., Phan, M.Q., Horta, L.G., Longman, R.W.: Identification of observer/Kalman filter Markov parameters – theory and experiments. J. Guid. Control Dyn. 16(2), 320–329 (1993)
Juang, J.-N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8, 620–627 (1985)
Phan, M.Q., Juang, J.-N., Longman, R.W.: Identification of linear multivariable systems by identification of observers with assigned real eigenvalues. J. Astronaut. Sci. 15(1), 88–95 (1992)
Phan, M.Q., Horta, L.G., Juang, J.-N., Longman, R.W.: Linear system identification via an asymptotically stable observer. J. Optim. Theory Appl. 79(1), 59–86 (1993)
Phan, M.Q., Horta, L.G., Juang, J.-N., Longman, R.W.: Improvement of observer/Kalman filter identification (OKID) by residual whitening. J. Vib. Acoust. 117, 232–238 (1995)
Juang, J.-N.: Applied System Identification. Prentice-Hall, Upper Saddle River (2001)
Phan, M.Q.: Interaction matrices in system identification and control. In: Proceedings of the 15th Yale Workshop on Adaptive and Learning Systems, New Haven (2011)
Van Overchee, P., De Moor, B.: Subspace Identification for Linear Systems. Kluwer Academic, Boston (1996)
Qin, S.J.: An Overview of Subspace Identification. Comput. Chem. Eng. 30(10–12), 1502–1513 (2006)
Verhaegen, M., Dewilde P.: Subspace model identification part 1: the output error state-space model identification class of algorithms. Int. J. Control 56(5), 1187–1210 (1992)
Van Overchee, P., De Moor, B.: A unifying theorem for three subspace system identification algorithms. Automatica 31(12), 1853–1864 (1995)
Jansson, M., Wahlberg, B.: A linear regression approach to state-space subspace system identification. Signal Process. 52, 103–129 (1996)
Van Overchee, P., De Moor, B.: N4SID: subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica 30(1), 75–93 (1994)
Phan, M.Q., Čelik, H.: A superspace method for discrete-time bilinear model identification by interaction matrices. J. Astronaut. Sci. 59(1–2), 433–452 (2012)
De Moor, B., De Gersem, P., De Schutter, B., Favoreel, W.: DAISY: a database for identification of systems. Journal A 38(3), 4–5 (1997)
Acknowledgements
This research is supported by a STTR Phase II contract from the US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) to Dartmouth College and Sound Innovations, Inc.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Lin, P., Phan, M.Q., Ketcham, S.A. (2014). State-Space Model and Kalman Filter Gain Identification by a Superspace Method. In: Bock, H., Hoang, X., Rannacher, R., Schlöder, J. (eds) Modeling, Simulation and Optimization of Complex Processes - HPSC 2012. Springer, Cham. https://doi.org/10.1007/978-3-319-09063-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-09063-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09062-7
Online ISBN: 978-3-319-09063-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)