Abstract
Simplicial subsets are popular in branch-and-bound methods for Global Optimization. Longest Edge Bisection is a convenient way to divide a simplex. When the number of dimensions is greater than two, irregular simplices (not all edges have the same length) may appear with more than one longest edge. In these cases, the first longest edge is usually selected. We study the impact of other selection rule of the longest edge to be bisected next on the development of a branch-and-bound algorithm to solve multidimensional Lipschitz Global Optimization instances. Experiments show a significant reduction in the number of evaluated simplices for most of the test problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Christodoulos, A.F., Pardalos, P.M. (eds.): State of the Art in Global Optimization: Computational Methods and Applications. Nonconvex Optimization and Its Applications, vol. 7. Kluwer Academic Publishers (1996)
Mitten, L.G.: Branch and bound methods: general formulation and properties. Oper. Res. 18(1), 24–34 (1970)
Ibaraki, T.: Theoretical comparisons of search strategies in branch and bound algorithms. Int. J. Comput. Inf. Sci. 5(4), 315–344 (1976)
Aparicio, G., Casado, L.G., Hendrix, E.M.T., García, I., Toth, B.G.: On computational aspects of a regular n-simplex bisection. In: 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 513–518 (October 2013)
Paulavičius, R., Žilinskas, J.: Global optimization using the branch-and-bound algorithm with a combination of Lipschitz bounds over simplices. Technol. Econ. Dev. Econ. 15(2), 310–325 (2009)
Horst, R., Tuy, H.: Global Optimization (Deterministic Approaches). Springer, Berlin (1990)
Todd, M.J.: The computation of fixed points and applications. Lecture Notes in Economics and Mathematical Systems, vol. 24. Springer (1976)
Herrera, J.F.R., Casado, L.G., Paulavičius, R., Žilinskas, J., Hendrix, E.M.T.: On a hybrid MPI-Pthread approach for simplicial branch-and-bound. In: 2013 IEEE 27th International Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), pp. 1764–1770 (May 2013)
Herrera, J.F.R., Casado, L.G., Hendrix, E.M.T., Paulavičius, R., Žilinskas, J.: Dynamic and hierarchical load-balancing techniques applied to parallel branch-and-bound methods. In: 2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 497–502 (October 2013)
Paulavičius, R., Žilinskas, J., Grothey, A.: Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim. Lett. 4(2), 173–183 (2010)
Hannukainen, A., Korotov, S.: On numerical regularity of the face-to-face longest-edge bisection algorithm for tetrahedral partitions. Sci. Comput. Program. 90, Part A, 34–41 (2014)
Paulavičius, R., Žilinskas, J.: Simplicial global optimization. Springer Briefs in Optimization. Springer, New York (2014)
Hansen, P., Jaumard, B.: Lipschitz optimization. In: Horst, R., Pardalos, P. (eds.) Handbook of Global Optimization. Nonconvex Optimization and Its Applications, vol. 2, pp. 407–493. Springer US (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Herrera, J.F.R., Casado, L.G., Hendrix, E.M.T., García, I. (2014). On Simplicial Longest Edge Bisection in Lipschitz Global Optimization. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8580. Springer, Cham. https://doi.org/10.1007/978-3-319-09129-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-09129-7_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09128-0
Online ISBN: 978-3-319-09129-7
eBook Packages: Computer ScienceComputer Science (R0)