Skip to main content

Adaption of a Self-Learning Algorithm for Dynamic Classification of Water Bodies to MERIS Data

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8579))

Included in the following conference series:

Abstract

In many global applications of remote sensing land-water masks can improve the interpretation results. Their use can be of advantage to distinguish between different types of dark areas (e.g. cloud or topographic shadows, burned areas, coniferous forests, water areas). On one hand, water bodies cannot always be classified exactly on basis of available remote sensing data. On the other hand static land-water masks of different quality are available. But the main deficiencies are caused by the fact that land-water masks represent only a temporal snapshot of the water bodies. A dynamic self-learning water masking approach was developed at first for AATSR data to combine the advantages of static mask with results of pre-classifications. This paper presents the adaption of this procedure for MERIS remote sensing data. As before with AATSR data the aim consists in integrating high-quality water masks in processing chains for deriving value-added remote sensing data products. The results for some regional examples demonstrate the quality of masks and the advantages to conventional water masking algorithms. Furthermore, it will be discussed, that it is useful for a global water mask of high quality to integrate further special masks as cloud or in particular terrain shadow masks. At least, the land-water mask plays not only an important role in complex processing chains itself is the result of a complex procedure. Beside the results have shown successful transfer of a developed processing scheme for operational deriving of actual land-water masks to data of a second sensor, the adaption to further sensors or the adaption of the processor to other object types as e.g. forest will be possible in future as part of operational monitoring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borg, E., Fichtelmann, B.: Determination of the usability of remote sensing data. EP 1591961 B1 (2005)

    Google Scholar 

  2. Carroll, M.L., Townshend, J.R., DiMiceli, C.M., Noojipady, P., Sohlberg, R.A.: A new global raster water mask at 250 m resolution. Int. J. of Digital Earth 2, 291–308 (2009)

    Article  Google Scholar 

  3. ESA CCI ECV Fire Disturbance (fire_cci), N° 4000101779/10/I-LG

    Google Scholar 

  4. ESA: MERIS Algorithm Theoretical Basis Document (ATBD), 2-17 - Pixel Classification, Issue 5.0, (2011), https://earth.esa.int/instruments/meris/atbd/atbd_2.17.pdf (last access: January 29, 2014)

  5. Fichtelmann, B., Borg, E., Kriegel, M.: Verfahren zur operationellen Bereitstellung von Zusatzdaten für die automatische Fernerkundungsdatenverarbeitung. In: 23rd AGIT Symposium Angewandte Geoinformatik (Strobl, Blaschke, Griesebner), Salzburg, pp. 12–20 (2011)

    Google Scholar 

  6. Fichtelmann, B., Borg, E.: A New Self-Learning Algorithm for Dynamic Classification of Water Bodies. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part III. LNCS, vol. 7335, pp. 457–470. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Frey, C.M., Kuenzer, C., Dech, S.: Quantitative comparison of the operational NOAA-AVHRR LST product of DLR and the MODIS LST product V005. Int. J. of Remote Sensing 33, 7165–7183 (2012)

    Article  Google Scholar 

  8. Global Climate Observing System (GCOS): Guidelines for the generation of satellite-based datasets and products meeting GCOS requirements. Geneva: World Meteorological Organization (2009)

    Google Scholar 

  9. Google Earth, available software at http://www.google.de/intl/de/earth/ (last access: January 21, 2014)

  10. Google Maps, http://www.evl.uic.edu/pape/data/WDB/ , http://www.evl.uic.edu/pape/data/WDB/ (last access: January 21, 2014)

  11. Guenther, K.P., Maier, S.W.: AVHRR compatible vegetation index derived from MERIS data. Int. J. of Remote Sensing 28(3-4), 693–708 (2007)

    Article  Google Scholar 

  12. Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G.: High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342, 850–853 (2013), http://earthenginepartners.appspot.com/science-2013-global-forest

    Article  Google Scholar 

  13. Justice, C., Giglio, L., Korontzi, S., Owens, J., Morisette, J., Roy, D., Descloitres, J., Alleaume, S., Petitcolin, F., Kaufman, Y.: The MODIS fire products. Remote Sensing of Environment 83(1&2), 244–262 (2002)

    Article  Google Scholar 

  14. Knaur, T.: Knaurs Grosser Weltatlas (Orig.: The Times Atlas of the World by Bartholomew and Times Book), Droemersche Verlagsanstalt Th. Knaur Nachf. Munich (1993)

    Google Scholar 

  15. Lehner, B., Doll, P.: Development and validation of a global database of lakes, reservoirs, and wetlands. Journal of Hydrology 296, 1–22 (2004)

    Article  Google Scholar 

  16. MERIS Product Handbook Issue 2.1 (2006), https://earth.esa.int/handbooks/meris/index30082011.html (last access: January 21, 2014)

  17. Plummer, S.: The ESA Climate Change Initiative. Description. ESA-ESRIN, Frascati (2009)

    Google Scholar 

  18. USGS (U.S. Geological Survey): Documentation for the Shuttle Radar Topography Mission (SRTM) Water Body Data Files, http://dds.cr.usgs.gov/srtm/version2_1/SWBD/SWBD_Documentation/Readme_SRTM_Water_Body_Data.pdf (last access: January 21, 2014)

  19. Wan, Z., Zhang, Y., Zhang, Q., Li, Z.: Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sensing of Environment 83(1&2), 163–180 (2002)

    Article  Google Scholar 

  20. Wessel, P., Smith, W.H.F.: A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101(B4), 8741–8743 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Fichtelmann, B., Borg, E., Guenther, K.P. (2014). Adaption of a Self-Learning Algorithm for Dynamic Classification of Water Bodies to MERIS Data. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8579. Springer, Cham. https://doi.org/10.1007/978-3-319-09144-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09144-0_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09143-3

  • Online ISBN: 978-3-319-09144-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics