Skip to main content

Grid Calculation Tools for Massive Applications of Collision Dynamics Simulations: Carbon Dioxide Energy Transfer

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8579))

Included in the following conference series:

Abstract

The dynamics of CO2+CO2 collisions is a key issue in atmospheric chemistry, combustion, plasma and gas dynamics applications, one of the most relevant aspects being the energy transfer between translational, rotational and vibrational degrees of freedom. The use of collision observables such as cross sections and rates in kinetic models for practical applications is however conditioned to the availability of such quantities at a state-to-state level of accuracy. On the other hand, the accuracy is strongly dependent on the description of the intermolecular interactions in the CO2 dimer. Given the high number of quantum states for CO2 (with linear CO2 having four internal degrees of freedom) massive dynamics calculations are required to span the manifold of quantum states, a fact that restricts the alternatives to only quasiclassical trajectories, as the method to run dynamics. Due to the embarrassingly parallel nature of trajectories, such methods alongside a suitable choice of parallelization parameters (e.g. energy, angular momentum, etc..) greatly benefit of Grid computing environments. We present here some illustrative results obtained by quasiclassical trajectories (QCT) used in the framework of a recently developed theoretical and computational tool for collision simulations on the Grid, where the CO2-CO2 collisions are driven by a semiempirical intermolecular potential energy surface (PES) also recently developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Capitelli, M., Ferreira, C.M., Gordiets, B.F., Osipov, R.: Plasma kinetics in atmospheric gases. Springer (2000)

    Google Scholar 

  2. Kustova, E., Nagnibeda, E.: State-to-state theory of vibrational kinetics and Dissociation in Three-Atomic Gases. In: Bartel, T., Gallis, M. (eds.) Rarefied Gas Dynamics, of AIP Conference Proceedings, vol. 585, pp. 620–627 (2001)

    Google Scholar 

  3. Hirschfelder, J.O.: Intermolecular Forces. Adv. Chem. Phys. 12 (1967)

    Google Scholar 

  4. Pacifici, L., Verdicchio, M., Faginas-Lago, N., Lombardi, A., Costantini, A.: A high-level ab initio study of the N2 + N2 reaction channel. J. Comput. Chem. 34, 2668–2676 (2013)

    Article  Google Scholar 

  5. Tsai, P.-Y., Chao, M.-H., Kasai, T., Lin, K.-C., Lombardi, A., Palazzetti, F., Aquilanti, V.: Roads leading to roam. Role of triple fragmentation and of conical intersections in photochemical reactions: Experiments and theory on methyl formate. Phys. Chem. Chem. Phys. 16, 2854–2865 (2014)

    Article  Google Scholar 

  6. Lombardi, A., Palazzetti, F., Lin, K.-C., Tsai, P.-Y.: Effective four-center model for the photodissociation dynamics of methyl formate. In: Murgante, B., et al. (eds.) ICCSA 2014, Part I. LNCS, vol. 8579, pp. 452–467. Springer, Heidelberg (2014)

    Google Scholar 

  7. Barreto, P.R.P., Vilela, A., Lombardi, A., Maciel, G., Palazzetti, F., Aquilanti, V.: The hydrogen peroxide-rare gas systems: Quantum chemical calculations and hyperspherical harmonic representation of the potential energy surface for atom-floppy molecule interactions. J. Phys. Chem. A. 111, 12754–12762 (2007)

    Article  Google Scholar 

  8. Maciel, G.S., Barreto, P.R.P., Palazzetti, F., Lombardi, A., Aquilanti, V.: A quantum chemical study of H2S2: Intramolecular torsional mode and intermolecular interactions with rare gases. J. Chem. Phys. 129, 164302 (2008)

    Article  Google Scholar 

  9. Barreto, P.R.P., Albernaz, A.F., Palazzetti, F., Lombardi, A., Grossi, G., Aquilanti, V.: Hyperspherical representation of potential energy surfaces: Intermolecular interactions in tetra-atomic and penta-atomic systems. Phys. Scripta 84, 028111 (2011)

    Google Scholar 

  10. Barreto, P.R.B., Albernaz, A.F., Capobianco, A., Palazzetti, F., Lombardi, A., Grossi, G., Aquilanti, G.: Potential energy surfaces for interactions of H2O with H2, N2 and O2: A hyperspherical harmonics representation, and a minimal model for the H2O-rare-gas-atom systems. Computational and Theoretical Chemistry 990, 53–61 (2012)

    Article  Google Scholar 

  11. Aquilanti, V., Grossi, G., Lombardi, A., Maciel, G.S., Palazzetti, F.: Aligned Molecular Collisions and a Stereodynamical Mechanism for Selective Chirality. Rendiconti Lincei 22, 125–135 (2011)

    Article  Google Scholar 

  12. Su, T.-M., Palazzetti, F., Lombardi, A., Grossi, G., Aquilanti, V.: Molecular Alignment and Chirality in Gaseous Streams and Vortices. Rendiconti Lincei 24, 291–297 (2013)

    Article  Google Scholar 

  13. Palazzetti, F., Tsai, P.-Y., Lombardi, A., Nakamura, N., Che, D.-C., Lin, K.-C., Aquilanti, V.: Aligned Molecules: Chirality Discrimination in Photodissociation and in Molecular Dynamics. Rendiconti Lincei 24, 299–308 (2013)

    Article  Google Scholar 

  14. Lombardi, A., Maciel, G.S., Palazzetti, F., Grossi, G., Aquilanti, V.: Alignment and Chirality in Gaseous Flows. J. Vacuum Soc. Japan 53, 645 (2010)

    Article  Google Scholar 

  15. Elango, M., Maciel, G.S., Palazzetti, F., Lombardi, A., Aquilanti, V.: Quantum Chemistry of C3H6O Molecules: Structure and Stability, Isomerization Pathways, and Chirality Changing Mechanisms. J. Phys. Chem. A 114, 9864–9874 (2010)

    Article  Google Scholar 

  16. Castro Palacio, J.C., Velasquez Abad, L., Lombardi, A., Aquilanti, V., Rubayo Soneira, J.: Normal and hyperspherical mode analysis of NO-doped Kr crystals upon Rydberg excitation of the impurity. J. Chem. Phys. 126, 174701 (2007)

    Article  Google Scholar 

  17. Palazzetti, F., Munusamy, E., Lombardi, A., Grossi, G., Aquilanti, V.: Spherical and Hyperspherical Representation of Potential Energy Surfaces for Intermolecular Interactions. Int. J. Quantum Chem. 111, 318–332 (2011)

    Article  Google Scholar 

  18. Barreto, P.R.P., Palazzetti, F., Grossi, G., Lombardi, A., Maciel, G.S., Vilela, A.F.A.: Range and Strength of Intermolecular Forces for van der Waals Complexes of the Type H2X n -Rg, with X = O, S and n = 1,2. Int. J. Quantum Chem. 110, 777 (2010)

    Article  Google Scholar 

  19. Elango, M., Maciel, G.S., Lombardi, A., Cavalli, S., Aquilanti, V.: Quantum chemical and dynamical approaches to intra and intermolecular kinetics: The C n H2n O (n = 1, 2, 3) molecules. Int. J. Quantum Chem. 111, 1784–1791 (2011)

    Article  Google Scholar 

  20. Lombardi, A., Aquilanti, V., Yurtsever, E., Sevryuk, M.B.: Specific heats of clusters near a phase transition: Energy partitions among internal modes. Chem. Phys. Lett. 430, 424–428 (2006)

    Article  Google Scholar 

  21. Aquilanti, V., Carmona Novillo, E., Garcia, E., Lombardi, A., Sevryuk, M.B., Yurtsever, E.: Invariant energy partitions in chemical reactions and cluster dynamics simulations Computational. Materials Science 35, 187–191 (2006)

    Google Scholar 

  22. Calvo, F., Gadea, F.X., Lombardi, A., Aquilanti, V.: Isomerization dynamics and thermodynamics of ionic argon clusters. J. Chem. Phys. 125, 114307 (2006)

    Article  Google Scholar 

  23. Aquilanti, V., Lombardi, A., Sevryuk, M.B.: Phase-space invariants for aggregates of particles: Hyperangular momenta and partitions of the classical kinetic energy. J. Chem. Phys. 121, 5579–5589 (2004)

    Article  Google Scholar 

  24. Aquilanti, V., Lombardi, A., Sevryuk, M.B., Yurtsever, E.: Phase-space invariants as indicators of the critical behavior of nanoaggregates. Phys. Rev. Lett. 93, 113402 (2004)

    Article  Google Scholar 

  25. Cappelletti, D., Pirani, F., Bussery-Honvault, B., Gomez, L., Bartolomei, M.: A bond-bond Description of the Intermolecular Interaction Energy: the Case of Weakly Bound N2-H2 and N2-N2 Complexes. Phys. Chem. Chem. Phys. 10, 4281–4293 (2008)

    Article  Google Scholar 

  26. Bartolomei, M., Pirani, F., Laganá, A., Lombardi, A.: A full dimensional grid empowered simulation of the CO2 + CO2 processes. J. Comp. Chem. 33, 1806–1819 (2012)

    Article  Google Scholar 

  27. Lombardi, A., Faginas-Lago, N., Laganá, A., Pirani, F., Falcinelli, S.: A bond-bond portable approach to intermolecular interactions: Simulations for N-methylacetamide and carbon dioxide dimers. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part I. LNCS, vol. 7333, pp. 387–400. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Faginas-Lago, N., Albertí, M., Laganá, A., Lombardi, A.: Water (H2O) m or Benzene (C6H6) n Aggregates to Solvate the K + ? In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 1–15. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  29. Albertí, M., Faginas-Lago, N.: Competitive solvation of K +  by C6H6 and H2O in the K + -(C6H6)n-(H2O) m (n = 14; m = 16) aggregates. Eur. Phys. J. D 67, 73 (2013)

    Article  Google Scholar 

  30. Albertí, M., Faginas-Lago, N.: Ion Size Influence on the Ar Solvation Shells of M + C6F6 Clusters (M = Na, K, Rb, Cs). J. Phys. Chem. A 116, 3094–3102 (2012)

    Article  Google Scholar 

  31. Faginas-Lago, N., Albertí, M., Costantini, A., Laganá, A., Lombardi, A., Pacifici, L.: An innovative synergistic grid approach to the computational study of protein aggregation mechanisms. J. Mol. Model. 20, 2226 (2014), doi:10.1007/s00894-014-2226-4

    Article  Google Scholar 

  32. Albertí, M., Faginas-Lago, N., Pirani, F.: Ar Solvation Shells in K + HFBz: From Cluster Rearrangement to Solvation Dynamics. J. Phys. Chem. A 115, 10871–10879 (2011)

    Article  Google Scholar 

  33. Schatz, G.C.: In: Truhlar, D. (ed.) Potential Energy Surfaces and Dynamics Calculations, p. 287. Plenum Press, New York (1981)

    Google Scholar 

  34. Lombardi, A., Faginas-Lago, N., Pacifici, L., Costantini, A.: Modeling of energy transfer from vibrationally excited CO2 molecules: Cross sections and probabilities for kinetic modeling of atmospheres, flows, and plasmas. J. Phys. Chem. A 117, 11430–11440 (2013)

    Article  Google Scholar 

  35. Lombardi, A., Laganá, A., Pirani, F., Palazzetti, F., Faginas-Lago, N., Lombardi, A.: Carbon Oxides in Gas Flows and Earth and Planetary Atmospheres: State-to-State Simulations of Energy Transfer and Dissociation Reactions. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part II. LNCS, vol. 7972, pp. 17–31. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  36. Falcinelli, S., Rosi, M., Candori, P., Vecchiocattivi, F., Bartocci, A., Lombardi, A., Faginas-Lago, N., Pirani, F.: Modeling the Intermolecular Interactions and Characterization of the Dynamics of Collisional Autoionization Processes. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 69–83. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  37. Manuali, C., Rampino, S., Laganà, A.: GriF: A Grid Framework for a Web Service Approach to Reactive Scattering. Comp. Phys. Comm. 181, 1179 (2010)

    Article  MATH  Google Scholar 

  38. Manuali, C., Laganà, A.: GriF: A New Collaborative Framework for a Web Service Approach to Grid Empowered Calculations. Future Gen. Comp. Syst. 27, 315 (2011)

    Article  Google Scholar 

  39. Faginas-Lago, N., Lombardi, A., Pacifici, L., Costantini, A.: Design and Implementation of a Grid Application for Direct Calculations of Reactive Rates. Comp. Theor. Chem. 1022, 103–107 (2013)

    Article  Google Scholar 

  40. Rampino, S., Faginas-Lago, N., Laganá, A., Huarte Larrañaga, F.: An extension of the grid empowered molecular simulator to quantum reactive scattering. J. Comp. Chem. 33, 708–714 (2012)

    Article  Google Scholar 

  41. Pacifici, L., Verdicchio, M., Faginas-Lago, N., Lombardi, A., Costantini, A.: A High-Level Ab Initio Study of the N2+N2 Reaction Channel. J. Comp. Chem. 34, 2668–2676 (2013)

    Article  Google Scholar 

  42. Pirani, F., Cappelletti, D., Liuti, G.: Chem. Phys. Lett. 350, 286 (2001)

    Google Scholar 

  43. Pirani, F., Albertí, M., Castro, A., Moix Teixidor, M., Cappelletti, D.: Chem. Phys. Lett. 37, 394 (2004)

    Google Scholar 

  44. Pirani, F., Brizi, S., Roncaratti, L., Casavecchia, P., Cappelletti, D., Vecchiocattivi, F.: Phys. Chem. Chem. Phys. 10, 5489 (2008)

    Google Scholar 

  45. Maitland, G.C., Rigby, M., Smith, E.B., Wakeham, W.A.: Intermolecular Forces. Clarendon Press, Oxford (1987)

    Google Scholar 

  46. Faginas-Lago, N., Huarte-Larrañaga, F., Albertí, M.: Eur. Phys. J. D 55, 75–85 (2009)

    Article  Google Scholar 

  47. Albertí, M., Faginas-Lago, N., Pirani, F.: Chem. Phys. 399, 232 (2012)

    Google Scholar 

  48. Albertí, M., Aguilar, A., Lucas, J.M., Pirani, F., Coletti, C., Re, N.: J. Phys. Chem. A 113, 14606 (2009)

    Article  Google Scholar 

  49. Albertí, M., Faginas-Lago, N.: European Phys. Journal D 67, 73 (2013)

    Google Scholar 

  50. Ragni, M., Lombardi, A., Pereira Barreto, P.R., Peixoto Bitencourt, A.C.: J. Phys. Chem. A 113, 15355 (2009)

    Article  Google Scholar 

  51. Oakley, M.T., Wheatley, R.J.: J. Chem. Phys. 130, 34110 (2009)

    Article  Google Scholar 

  52. Bukowski, R., Sadlej, J., Jeziorski, B., Jankowski, P., Szalewicz, K., Kucharski, S.A., Williams, H.L., Rice, B.M.: J. Chem. Phys. 110, 3785 (1999)

    Article  Google Scholar 

  53. Hase, W.L., Duchovic, R.J., Hu, X., Komornicki, A., Lim, K.F., Lu, D.-H., Peslherbe, G.H., Swamy, K.N., Vande Linde, S.R., Zhu, L., Varandas, A., Wang, H., Wolf, R.J.: J. Quantum Chemistry Program Exchange Bulletin 16, 671 (1996)

    Google Scholar 

  54. Carter, S., Murrell, J.N.: Croat Chem Acta 57, 355 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lombardi, A., Faginas-Lago, N., Laganà, A. (2014). Grid Calculation Tools for Massive Applications of Collision Dynamics Simulations: Carbon Dioxide Energy Transfer. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8579. Springer, Cham. https://doi.org/10.1007/978-3-319-09144-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09144-0_43

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09143-3

  • Online ISBN: 978-3-319-09144-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics