Skip to main content

Haptic Interaction with Fluid Based on Smooth Particles and Finite Elements

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8579))

Included in the following conference series:

Abstract

The modeling force feedback for haptic device proxies serves as a basis for haptic interaction. Thus far, the mainstream method for the haptic simulation of fluid emphasizes the dynamic behavior of the fluid based on user input, neglecting the concrete influence on the user derived from fluid by simplifying the dynamics of the proxy to economize overhead and accelerate computation. Being limited to the calculation of contact force, the resulting simulations are distorted and unrealistic. To address this issue, we propose a new hybrid model for haptic interaction with fluids based on FSI (fluid solid interaction). The fluid is modeled with SPH and the flexible proxy is modeled with FEM, which runs in real time with the algorithm optimization and hardware acceleration. To evaluate the efficiency of the hybrid model, some comparative experiments are made, and the results are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kwatra, N., Su, J., Grétarsson, J., Fedkiw, R.: A Method for Avoiding the Acoustic Time-Step Restriction in Compressible Flow. J. Comp. Phys. 228, 4146–4161 (2009)

    Article  MATH  Google Scholar 

  2. Lin, W.B.M.C.: Haptic Interaction With Fluid Media. In: ACM International Conference Proceeding Series. Proceedings of Graphics Interface, vol. 62, pp. 81–88 (2004)

    Google Scholar 

  3. Ristow, G.H.: Particles moving in spatially bounded viscous fluids. In: Computer Physics Communications, pp. 43–52 (1999)

    Google Scholar 

  4. Ristow, G.H.: Tumbling motion of elliptical particles in viscous two-dimensional fluids. International Journal of Modern Physics C 12(01), 127–139 (2001)

    Article  Google Scholar 

  5. Guendelman, E., Bridson, R., Fedkiw, R.: Non-convex rigid bodies with stacking. ACM Trans. Graph (Proc. SIGGRAPH) 22, 871–878 (2003)

    Article  Google Scholar 

  6. Stam, J.: Stable fuids.In: Siggraph, pp.121–128 (1999)

    Google Scholar 

  7. Lundin, K., Ynnerman, A., Gudmundsson, B.: Proxy-based haptic feedback from volumetric density data. In: Proceedings at Eurohaptic. pp. 104–109 (2002)

    Google Scholar 

  8. Lundin, K., Sillen, M., Cooper, M., Ynnerman, A.: Haptic visualization of computational fluid dynamics data using reactive forces. In: Proceedings-SPIE the International Society for Optical Engineering, vol. 5669, pp. 31–41 (2005)

    Google Scholar 

  9. Bryson, S., Levit, C.: The virtual wind tunnel. In: IEEE Computer Graphics and Applications (1992)

    Google Scholar 

  10. Lawrence, D., Lee, C., Pao, L., Novoselov, R.: Shock and vortex visualization using a combined visual/haptic interface. In: IEEE Visualization (2000)

    Google Scholar 

  11. Hasegawa, S., Dobashi, Y., Kato, M.: Virtual Canoe: Real-Time Realistic Water Simulation for Haptic Interaction. In: ACM SIGGRAPH (2005)

    Google Scholar 

  12. Dobashi, Y., et al.: A fluid resistance map method for real-time haptic interaction with fluids.In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology. ACM (2006)

    Google Scholar 

  13. Rianto, S., Li, L., Hartley, B.: Fluid Dynamic Simulation for Cutting in Virtual Environment. In: The 16th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (2008)

    Google Scholar 

  14. Yabe, T., et al.: The compact CIP (Cubic-Interpolated Pseudo-particle) method as a general hyperbolic solver. Computers and Fluids 19(3),421–431 (1991)

    Google Scholar 

  15. Benes, B., Tensinsky, V., Hornys, J., Bhatia, S.K.: Hydraulic erosion. Computer Animation and Virtual Worlds 17, 99–108 (2006)

    Article  Google Scholar 

  16. Mei, X., Decaudin, P., Hu, B.G.: Fast Hydraulic Erosion Simulation and Visualization on GPU. In: 15th Pacific Conference on Computer Graphics and Applications, pp. 47–56 (2007)

    Google Scholar 

  17. Neidhold, B., Wacker, M., Deussen, O.: Interactive physically based fluid and erosion simulation. In: Proceedings of Eurographics Workshop on Natural Phenomena, pp. 25–32 (2005)

    Google Scholar 

  18. Anh, N.H., Sourin, A., Aswani, P.: Physically based hydraulic erosion simulation on graphics processing unit. In: the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia Perth. ACM, New York (2007)

    Google Scholar 

  19. Vines, M., Mora, J., Lee, W.-S.: Real-time haptic display of fluids. In: Proceedings of the 2nd Canadian Conference on Computer Science and Software Engineering, vol. 5, pp. 149–153 (2009)

    Google Scholar 

  20. Kawai, M., Hirota, K., Kuroyanagi, S.: Development of a Real-time Fluid Simulator For an Interactive Virtual Environment: Improvement of Density Feedback in SPH. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, July14-17, pp. 1701–1706 (2009)

    Google Scholar 

  21. Kerwin, T.: Enhancing Realism of Wet Surfaces in Temporal Bone Surgical Simulation. IEEE TVCG 15(5), 747–758 (2009)

    Google Scholar 

  22. Crane, K., Llamas, I., Tariq, S.: Real-time simulation and rendering of 3D fluids. GPU Gems 3 (August 2007)

    Google Scholar 

  23. Yang, M., Lu, J., Safonova, A., Kuchenbecker, K.J.: GPU Methods for Real-Time Haptic Interaction with 3D Fluids. In: IEEE International Workshop on Haptic Audio-Visual Environments and Games, HAVE (November 2009)

    Google Scholar 

  24. Mora, J., Lee, W.S.: Real-time 3D fluid interaction with a haptic user interface. In: Proceedings of IEEE Symposium on 3D User Interfaces, pp. 75–81 (March 2008)

    Google Scholar 

  25. Yang, T.-H., Kwon, H.-J., Lee, S.S., An, J., Koo, J.-H., Kim, S.-Y., Kwon, D.-S.: Development of a miniature tunable stiffness display using MR fluids for haptic application. Sensors and Actuators A, Physical 163, 180–190 (2010)

    Google Scholar 

  26. Cirio, G., Marchal, M., Hillaire, S., Lécuyer, A.: Six Degrees-of-Freedom Haptic Interaction with Fluids. IEEE Transactions on Visualization and Computer Graphics 17(11), 1714–1727 (2011)

    Article  Google Scholar 

  27. Howe, R.D.: A force-reflecting teleoperated hand system for the study of tactile sensing in precision manipulation. In: Proceeding of IEEE Conference Robotics Automation, pp. 1321–1326 (1992)

    Google Scholar 

  28. Popescu, G.B., Bouzit, M.: Virtual reality simulation modeling for a haptic glove. In: Computer Animation Conference, pp. 195–200 (1999)

    Google Scholar 

  29. Massie, T.H.A.K.S.: The PHANTOM haptic interface: a device for probing virtual objects. In: Proceeding of the ASME Dynamic System and Control Division, Chicago, pp. 295–301 (1994)

    Google Scholar 

  30. Cristian Luciano, P.B., et al.: A framework for efficient and more realistic haptic application. In: Proc of 23rd ASME 2003, pp. 1–6 (2003)

    Google Scholar 

  31. Melder, N.: Translation and rotation of multi-point contacted virtual objects. In: Proceeding of Eurohaptics Conference, pp. 218–227 (2003)

    Google Scholar 

  32. Yngve, G.D., O’Brien, J.F., Hodgins, J.K.: Animating explosions. In: omputer graphics Proceedings. Annual conference Series. ACM SIGGRAPH, pp. 29–36. ACM Press, New York (2000)

    Google Scholar 

  33. Chen, J.X., Lobo, V.D.V., Hughes, C.E., et al.: Real-time fluid simulation in a dynamic virtual environment. IEEE Transaction on Computer Graphics and Applications 17(3), 52–61 (1997)

    Article  Google Scholar 

  34. Genevaux, O., Habibi, A., Dischler, J.-M.: Simulating fluid–solid interaction. In: Graphics Interface, pp. 31–38 (2003)

    Google Scholar 

  35. Takahashi, T., Ueki, H., Kunimatsu, A., Fujii, H.: The simulation of fluid-rigid body interaction. In: ACM SIGGRAPH, vol. 266 (2002)

    Google Scholar 

  36. Klingner, B.M., Feldman, B.E., Chentanez, N., O’Brien, J.F.: Fluid animation with dynamic meshes. ACM Trans. Graph., 820–825 (2006)

    Google Scholar 

  37. Batty, C., Bertails, F., Bridson, R.: A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26(3), 100 (2007)

    Article  Google Scholar 

  38. Carlson, M., Mucha, P.J., Turk, G.: Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23, 377–384 (2004)

    Article  Google Scholar 

  39. Chentanez, N., Goktekin, T.G., Feldman, B.E., O’Brien, J.F.: Simultaneous coupling of fluids and deformable bodies. In: ACM-EG Proc. Symposium on Computer Animation, pp. 83–89.

    Google Scholar 

  40. Müller, M., Schirm, S., Teschner, M., Heidelberger, B., Gross, M.: Interaction of Fluids with Deformable Solids. Computer Animation and Virtual Worlds 15(3-4), 159–171 (2004)

    Article  Google Scholar 

  41. Desbrun, M., Cani, M.-P.: Smoothed Particles: A new paradigm for animating highly deformable bodies. In: Eurographics Workshop on Computer Animation and Simulation (EGCAS), pp. 61–76 (August 1996)

    Google Scholar 

  42. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: SCA 2003 Proceedings of the 2003 ACM SIGGRAPH/Eurographic Kwat s Symposium on Computer Animation, pp. 154–159 (2003)

    Google Scholar 

  43. Lenaerts, T., Adams, B., Dutré, P.: Porous flow in particle-based fluid simulations. ACM Trans. Graph. 27(3) (2008)

    Google Scholar 

  44. Becker, M., Teschner, M.: Weakly Compressible SPH for Free Surface Flows. In: ACM SIGGRAPH/Eurographics Symp. Computer Animation, pp. 209–217 (2007)

    Google Scholar 

  45. Solenthaler, B., Pajarola, R.: Predictive-Corrective Incompressible SPH. ACM Transactions on Graphics (TOG) 28(3), article 40 (2009)

    Google Scholar 

  46. Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively Sampled Particle Fluids. ACM Transactions on Graphics 26(3), article 48 (2007)

    Google Scholar 

  47. Solenthaler, B., Gross, M.: Two-Scale Particle Simulation. ACM Transactions on Graphics 30(4), 81:1–81:8 (2011)

    Google Scholar 

  48. Chang, Y., Bao, K., Liu, Y., Zhu, J., Wu, E.: A particle-based method for viscoelastic fluids animation. In: Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, pp. 111–117 (2009)

    Google Scholar 

  49. Bridson, R., Fedkiw, R., Anderson, J.: Robust Treatment of Collisions, Contact and Friction for Cloth Animation. In: ACM SIGGRAPH, pp. 594–603 (2002)

    Google Scholar 

  50. Teschner, M., Heidelberger, B., Müller, M., Pomeranerts, D., Gross, M.: Optimized Spatial Hashing for Collision Detection of Deformable Objects. In: Proc. Vision, Modeling, Visualization VMV, Munich, pp. 47–54 (2003)

    Google Scholar 

  51. Vazquez, F., Garzon, E.M., Martinez, J., Fernandez, J.J.: The sparse matrix vector product on gpus. Aceuales, 1–13 (2009)

    Google Scholar 

  52. Fedkiw, R., Stam, J., Jensen, H.W.: Visual simulation of smoke. In: ACM SIGGRAPH 2001, pp. 15–22 (2001)

    Google Scholar 

  53. Takahashi, T., et al.: The simulation of fluid-rigid body interaction. In: ACM SIGGRAPH 2002 Conference Abstracts and Applications (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Z., Wang, Y. (2014). Haptic Interaction with Fluid Based on Smooth Particles and Finite Elements. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8579. Springer, Cham. https://doi.org/10.1007/978-3-319-09144-0_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09144-0_56

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09143-3

  • Online ISBN: 978-3-319-09144-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics