Abstract
Transport modeling, in general, and freight transport modeling, in particular, are becoming important tools for investigating the effects of investments and policies. Freight demand forecasting models are still in an experimentation and evolution stage. Nevertheless, some recent European projects, like Transtools or ETIS/ETIS Plus, have developed a unique modeling and data framework for freight forecast at large scale so to avoid data availability and modeling problems.
Despite this, projects that had multi-million Euros funding, using these modeling frameworks, have provided very different results for the same forecasting areas and years, giving rise to serious doubts about the results quality, especially in relation to their cost and development time. Moreover, many of these models are purely deterministic.
The project here developed tries to overcome the above-mentioned problems with a new easy-to-implement freight demand forecasting method based on Bayesian Networks using European official and available data. The method is applied to the Sixth European Freight Corridor.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albert, A., Schafer, A.: Demand for Freight Transportation in the U.S: A High-Level View. Journal of Transportation Statistics, (2013) (in print)
Ben-Akiva, M., Lerman, S.R.: Discrete choice analysis. MIT Press (1985)
Burgess et al.: Final Report TRANS-TOOLS (TOOLS for TRansport Forecasting ANd Scenario testing) Deliverable 6. Funded by 6th Framework RTD Programme. TNO Inro, Deft, Netherlands (2008)
Caplce, C., Phadnis, S.: Driving Forces Influencing Future Freight Flows-NCHRP, web-only document 195. Transport Research Board, Washington D.C. (2010)
Chase, K., Anater, P., Pelan, T.: Freight Demand Modeling and Data Improvement - Second Strategic Highway Research Program. Transport Research Board, Washington (2013)
Chen, M.: ETIS and TRANS-TOOLS v1 Freight demand. In: CTS-seminar –European and National Freight Demand Models, Stockolm (March 1, 2011)
Danielis, R., Rotaris, L.: An analysis of freight transport demand using stated preference data: A survey and a research project for the Friuli-Venezia Giulia region. Transporti Europei (13) (1999)
Floreano, D., Mattiussi, C.: Manuale sulle Reti Neurali. Mulino Editrice, Bologna (1996)
Fusco, G.: Handling Uncertainty in Interaction Modelling in GIS: How will an Urban Network Evolve? In: Prade, H., Jeansoulin, R., Papini, O., Schockaert, S. (eds.) Methods for Handling Imperfect Spatial Information, pp. 357–378. Springer, Berlin (2010)
Fusco, G.: Démarche géo-prospective et modélisation causale probabiliste. Cybergeo: European Journal of Geography, Systems, Modelling, Geostatistics, document 613 (2012), http://cybergeo.revues.org/25423 , doi:10.4000/cybergeo.25423
Inaudi, D., De Jong, G., Arnone, M.: Un modello matematico per la valutazione degli scenari di sviluppo del sistema del trasporto merci nel Nord-Ovest. In: XXXII Italian Conference of Regional Science (2013)
Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, New York (2001)
Korb, K.B., Nicholson, A.E.: Bayesian Artificial Intelligence. Chapman & Hall / CRC, Boca Raton (2004)
Meersman, H., Van de Voorde, E.: The Relationship between Economic Activity and Freight Transpot. In: Ben-Akiva, et al. (eds.) Freight Transport Modelling. Emerald Group Publishing (2013)
Ministère de l’Écologie, du Développement durable et de l’Énergie - Direction des Transports Terrestres-Bureau d’Informations et de Prévisions Economiques: Analyse et évolution des flux de transport de marchandises à travers les Pyrénées, Issy, Edition BIPE (2005)
National Cooperative Freight Research Program: Freight-Demand Modeling to Support Public-Sector Decision Making. Transport Research Board, Washington D.C (2010)
NEA Transport research and training BV: Core Database Development for the European Transport policy Information System (ETIS), Final Technical Report v1(2005)
Pearl, J.: Causality – Models, Reasoning and Inference. Cambridge University Press, Cambridge (2000)
Train, K.E.: Discrete Choice Methods with Simulation, 2nd edn. Cambridge University Press, USA (2009) ISBN: 9780521766555
Witten, I.H., Frank, E.: WEKA – Machine Learning Algorithms in Java. University of Waikato, Morgan Kaufmann Publishers (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Petri, M., Fusco, G., Pratelli, A. (2014). A New Data-Driven Approach to Forecast Freight Transport Demand. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8582. Springer, Cham. https://doi.org/10.1007/978-3-319-09147-1_29
Download citation
DOI: https://doi.org/10.1007/978-3-319-09147-1_29
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09146-4
Online ISBN: 978-3-319-09147-1
eBook Packages: Computer ScienceComputer Science (R0)