Skip to main content

Air Pollution Mapping Using Nonlinear Land Use Regression Models

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8581))

Included in the following conference series:

Abstract

Air pollution in cities is an important problem influencing the environment, the well-being of society as well as its economy, the management of urban zones, etc. The problem is extremely difficult due to a very complex distribution of the pollution sources, the morphology of cities and the dispersion processes leading to a multivariate nature of the pollution phenomenon and to its high spatial-temporal variability at the local scale. Therefore, the task of understanding, modelling and predicting spatial-temporal patterns of air pollution in urban zones is an interesting and challenging topic having many research axes from science-based modelling to geostatistics and data mining. Recently, the application of land use regression models (LUR) for air pollution analysis and mapping in urban zones has demonstrated their efficiency. The present research deals with a new development of nonlinear LUR models based on machine learning algorithms. A special attention is paid to the Multi-Layer Perceptron and Random Forest algorithms and their abilities to model the NO2 pollutant in the urban zone of Geneva.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Briggs, D.J.: The Role of GIS: Coping with Space (and Time) in Air Pollution Exposure Assessment. J. Toxicol Env. Health 68(13-14), 1243–1261 (2005)

    Article  Google Scholar 

  2. Kolovos, A., Skupin, A., Jerrett, M.: Multi-Perspective Analysis and Spatiotemporal Mapping of Air Pollution Monitoring Data. Environ. Sci. Technol. 44, 6738–6744 (2010)

    Article  Google Scholar 

  3. Henderson, S.B., Beckerman, B., Jerrett, M., Brauer, M.: Application of Land Use Regression to Estimate Long-Term Concentrations of Traffic-Related Nitrogen Oxides and Fine Particule Matter. Environ. Sci. Technol. 7(41), 2422–2428 (2007)

    Article  Google Scholar 

  4. Briggs, D.J., Collins, S., Elliott, P., Fisher, P., Kingham, S., Lebret, E., Pryl, K., Van Reeuwijk, H., Smallbone, K., Van der Veen, A.: Mapping Urban Air Pollution Using GIS: A Regression-Based Approach. Int. J. Geogr. Inf. Sci. 11, 699–718 (1997)

    Article  Google Scholar 

  5. Parenteau, M.-P., Sawada, M.C.: The Role of Spatial Representation in the Development of a LUR Model for Ottawa, Canada. Air Qual. Atm. Health 5, 311–323 (2012)

    Article  Google Scholar 

  6. Kashima, S., Yorifuji, T., Tsuda, T., Doi, H.: Application of Land Use Regression to Regulatory Air Quality Data in Japan. Science of the Total Environment 407(8), 3055–3062 (2009)

    Article  Google Scholar 

  7. Ross, Z., et al.: Nitrogen Dioxide Prediction in Southern California Using Land Use Regression Modelling: Potential for Environmental Health Analyses. J. Exposure Sci. Env. Epidem. 16(2), 106–114 (2005)

    Article  Google Scholar 

  8. Beelen, R., Voogt, M., Duyzer, J., Zxandveld, P., Hoek, G.: Comparison of the Performances of Land Use Regression Modelling and Dispersion Modelling in Estimating Small-Scale Variations in Long-Term Air Pollution Concentrations in a Dutch Urban Area. Atmos. Environ. 44, 4614–4621 (2010)

    Article  Google Scholar 

  9. Maynard, D., Coull, B.A., Gryparis, A., Schwartz, J.: Mortality risk associated with short-term exposure to traffic particles and sulfates. Environ. Health Perspect. 115(5), 751–755 (2007)

    Article  Google Scholar 

  10. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  11. Kanevski, M., Pozdnoukhov, A., Timonin, V.: Machine Learning Algorithms for Spatial Environmental Data. Theory, Applications, and Software. EPFL Press, Lausanne (2009)

    Book  Google Scholar 

  12. Tuia, D., Pozdnoukhov, A., Foresti, L., Kanevski, M.: Active Learning for Monitoring Network Optimization. In: Mateu, J., Muller, W. (eds.) Spatio-Temporal Design, pp. 285–318. John Wiley and Sons, Chichester (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Champendal, A., Kanevski, M., Huguenot, PE. (2014). Air Pollution Mapping Using Nonlinear Land Use Regression Models. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8581. Springer, Cham. https://doi.org/10.1007/978-3-319-09150-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09150-1_50

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09149-5

  • Online ISBN: 978-3-319-09150-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics