Skip to main content

Analysis of Turing Instability for Biological Models

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8584))

Included in the following conference series:

Abstract

Reaction-diffusion equations are often used to model biological phenomena. This type of system can produce stable spatial patterns from an uniform initial distribution. This phenomenon is known as Turing instability. This paper presents an analysis of the Turing instability for three biological models: a) Schnakenberg model, b) glycolysis model and c) blood coagulation model. The method of lines is used in the numerical solution, and the spatial discretization is done using a finite difference scheme. The resulting system of ordinary differential equations is then solved by an adaptive integration scheme with the use of SciPy, a Python package for scientific computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holmes, M.H.: Introduction to Numerical Methods in Differential Equations. Texts in Applied Mathematics. Springer, New York (2007)

    Book  MATH  Google Scholar 

  2. Holmes, M.H.: Introduction to the foundations of applied mathematics. Texts in applied mathematics, vol. 56. Springer (2009)

    Google Scholar 

  3. Torres, L.A.G.: Estudio de sistemas de reacción-difusión en dominios fijos y crecientes. Master’s thesis, Universidad Nacional de Colombia - Bogotá, UNAL (2008)

    Google Scholar 

  4. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics, vol. 18. Springer, New York (2003)

    Google Scholar 

  5. Garzón-Alvarado, D.A.: Simulación de procesos de reacción-difusión: Aplicación a la morfogénesis del tejido ósseo. PhD thesis, Universidad Zaragoza (2007)

    Google Scholar 

  6. Maini, P.K.: Using mathematical models to help understand biological pattern formation. Comptes Rendus Biologies 327(3), 225–234 (2004)

    Article  MathSciNet  Google Scholar 

  7. Vanegas-Acosta, J.C., Garzón-Alvarado, P.N.S.L., Mathematical, D.A.: Mathematical model of the coagulation in the bone-dental implant interface. Comp. in Bio. and Med. 40(10), 791–801 (2010)

    Article  Google Scholar 

  8. Turing, A.: The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B 237, 37–72 (1952)

    Article  Google Scholar 

  9. Murray, J.D.: Mathematical Biology I. An Introduction. 3 edn. Interdisciplinary Applied Mathematics, vol. 17. Springer, New York (2002)

    Google Scholar 

  10. Schnakenberg, J.: Simple chemical reaction systems with limit cycle behaviour. Journal of Theoretical Biology 81(3), 389–400 (1979)

    Article  MathSciNet  Google Scholar 

  11. TheFreeDictionary.com: Autocatalysis, http://medical-dictionary.thefreedictionary.com/Autocatalysis (accessed: April 24, 2014)

  12. Segel, L.A.: Biological kinetics, vol. 12. Cambridge University Press (1991)

    Google Scholar 

  13. TheFreeDictionary.com: Nad, http://medical-dictionary.thefreedictionary.com/NAD (accessed: April 24, 2014)

  14. TheFreeDictionary.com: Nadh, http://medical-dictionary.thefreedictionary.com/NADH (accessed: April 24, 2014)

  15. Minors, D.S.: Haemostasis, blood platelets and coagulation. Anaesthesia and Intensive Care Medicine 8(5), 214–216 (2007); Paediatrics and blood physiology

    Google Scholar 

  16. Hall, J.E.: Pocket companion to Guyton & Hall textbook of medical physiology. Elsevier Saunders (2006)

    Google Scholar 

  17. Python: Python’s homepage, http://www.python.org/ (accessed: April 24, 2014)

  18. Scipy: Scipy’s homepage, http://www.scipy.org/ (accessed: April 24, 2014)

  19. Odeint: Odeint’s homepage, http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html (accessed: April 24, 2014)

  20. Sparse: Sparse’s homepage, http://docs.scipy.org/doc/scipy/reference/sparse.html (accessed: April 24, 2014)

  21. LeVeque, R.J.: Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems. SIAM (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Rodrigues, D., Barra, L.P., Lobosco, M., Bastos, F. (2014). Analysis of Turing Instability for Biological Models. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8584. Springer, Cham. https://doi.org/10.1007/978-3-319-09153-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09153-2_43

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09152-5

  • Online ISBN: 978-3-319-09153-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics