Skip to main content

Proof Complexity and the Kneser-Lovász Theorem

  • Conference paper
Theory and Applications of Satisfiability Testing – SAT 2014 (SAT 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8561))

Abstract

We investigate the proof complexity of a class of propositional formulas expressing a combinatorial principle known as the Kneser-Lovász Theorem. This is a family of propositional tautologies, indexed by an nonnegative integer parameter k that generalizes the Pigeonhole Principle (obtained for k = 1).

We show, for all fixed k, 2Ω(n) lower bounds on resolution complexity and exponential lower bounds for bounded depth Frege proofs. These results hold even for the more restricted class of formulas encoding Schrijver’s strenghtening of the Kneser-Lovász Theorem. On the other hand for the cases k = 2,3 (for which combinatorial proofs of the Kneser-Lovász Theorem are known) we give polynomial size Frege (k = 2), respectively extended Frege (k = 3) proofs. The paper concludes with a brief announcement of the results (presented in subsequent work) on the complexity of the general case of the Kneser-Lovász theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben-Sasson, E., Nordström, J.: Understanding space in proof complexity: Separations and trade-offs via substitutions. In: Proceedings of the Second Symposium on Innovations in Computer Science, pp. 401–416 (2011)

    Google Scholar 

  2. Bonet, M., Buss, S., Pitassi, T.: Are there hard examples for Frege Systems? In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 30–56 (1995)

    Google Scholar 

  3. Buss, S.: Polynomial size proofs of the propositional pigeonhole principle. Journal of Symbolic Logic 52(4), 916–927 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chén, W., Zhang, W.: A direct construction of polynomial-size OBDD proof of pigeon hole problem. Information Processing Letters 109(10), 472–477 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cook, S., Nguyen, P.: Logical foundations of proof complexity. Cambridge University Press (2010)

    Google Scholar 

  6. Cook, W., Coullard, C., Turán, G.: On the complexity of cutting-plane proofs. Discrete Applied Mathematics 18(1), 25–38 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Freund, R., Todd, M.: A constructive proof of Tucker’s combinatorial lemma. Journal of Combinatorial Theory, Series A 30(3), 321–325 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garey, M., Johnson, D.: The complexity of near-optimal graph coloring. Journal of the ACM 23(1), 43–49 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Istrate, G., Crãciun, A.: Proof complexity and the kneser-lovasz theorem. In: SAT 2014. LNCS, vol. 8561, pp. 139–154. Springer, Heidelberg (2014)

    Google Scholar 

  10. Istrate, G., Crãciun, A.: Proof complexity and the kneser-lovász theorem. Tech. rep., arXiv.org Report 1402.4338 (2014)

    Google Scholar 

  11. Kozlov, D.: Combinatorial Algebraic Topologya. Springer (2008)

    Google Scholar 

  12. Krajicek, J.: Bounded Arithmetic, Propositional Logic and Complexity Theory. Cambridge University Press (1995)

    Google Scholar 

  13. Krajicek, J., Pudlák, P., Woods, A.: Exponential lower bound to the size of bounded depth Frege proofs of the pigeonhole principle. Random Structures and Algorithms 7(1), 15–39 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Krajicek, J.: Diagonalization in proof complexity. Fundamenta Mathematicae 182, 181–192 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Krajíček, J.: Implicit proofs. Journal of Symbolic Logic 69(2), 387–397 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. de Longueville, M.: 25 years proof of the Kneser conjecture: The advent of topological combinatorics. EMS Newsletter 53, 16–19 (2004)

    Google Scholar 

  17. de Longueville, M.: A Course in Topological Combinatorics. Springer (2012)

    Google Scholar 

  18. Lovász, L.: Kneser’s conjecture, chromatic number, and homotopy. Journal of Combinatorial Theory, Series A 25, 319–324 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Matoušek, J.: A combinatorial proof of Kneser’s conjecture. Combinatorica 24(1), 163–170 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Matoušek, J.: Using the Borsuk-Ulam Theorem, 2nd edn. Springer (2008)

    Google Scholar 

  21. Pálvölgyi, D.: 2D-TUCKER is PPAD-complete. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 569–574. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer and System Sciences 48(3), 498–532 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pitassi, T., Beame, P., Impagliazzo, R.: Exponential lower bounds for the pigeonhole principle. Computational Complexity 3(2), 97–140 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schrijver, A.: Vertex-critical subgraphs of Kneser graphs. Nieuw Arch. Wiskd., III. Ser. 26, 454–461 (1978)

    MATH  MathSciNet  Google Scholar 

  25. Stahl, S.: n-tuple colorings and associated graphs. Journal of Combinatorial Theory B 20(3), 185–203 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Istrate, G., Crãciun, A. (2014). Proof Complexity and the Kneser-Lovász Theorem. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09284-3_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09283-6

  • Online ISBN: 978-3-319-09284-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics