Abstract
We investigate the proof complexity of a class of propositional formulas expressing a combinatorial principle known as the Kneser-Lovász Theorem. This is a family of propositional tautologies, indexed by an nonnegative integer parameter k that generalizes the Pigeonhole Principle (obtained for k = 1).
We show, for all fixed k, 2Ω(n) lower bounds on resolution complexity and exponential lower bounds for bounded depth Frege proofs. These results hold even for the more restricted class of formulas encoding Schrijver’s strenghtening of the Kneser-Lovász Theorem. On the other hand for the cases k = 2,3 (for which combinatorial proofs of the Kneser-Lovász Theorem are known) we give polynomial size Frege (k = 2), respectively extended Frege (k = 3) proofs. The paper concludes with a brief announcement of the results (presented in subsequent work) on the complexity of the general case of the Kneser-Lovász theorem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ben-Sasson, E., Nordström, J.: Understanding space in proof complexity: Separations and trade-offs via substitutions. In: Proceedings of the Second Symposium on Innovations in Computer Science, pp. 401–416 (2011)
Bonet, M., Buss, S., Pitassi, T.: Are there hard examples for Frege Systems? In: Clote, P., Remmel, J. (eds.) Feasible Mathematics II, pp. 30–56 (1995)
Buss, S.: Polynomial size proofs of the propositional pigeonhole principle. Journal of Symbolic Logic 52(4), 916–927 (1987)
Chén, W., Zhang, W.: A direct construction of polynomial-size OBDD proof of pigeon hole problem. Information Processing Letters 109(10), 472–477 (2009)
Cook, S., Nguyen, P.: Logical foundations of proof complexity. Cambridge University Press (2010)
Cook, W., Coullard, C., Turán, G.: On the complexity of cutting-plane proofs. Discrete Applied Mathematics 18(1), 25–38 (1987)
Freund, R., Todd, M.: A constructive proof of Tucker’s combinatorial lemma. Journal of Combinatorial Theory, Series A 30(3), 321–325 (1981)
Garey, M., Johnson, D.: The complexity of near-optimal graph coloring. Journal of the ACM 23(1), 43–49 (1976)
Istrate, G., Crãciun, A.: Proof complexity and the kneser-lovasz theorem. In: SAT 2014. LNCS, vol. 8561, pp. 139–154. Springer, Heidelberg (2014)
Istrate, G., Crãciun, A.: Proof complexity and the kneser-lovász theorem. Tech. rep., arXiv.org Report 1402.4338 (2014)
Kozlov, D.: Combinatorial Algebraic Topologya. Springer (2008)
Krajicek, J.: Bounded Arithmetic, Propositional Logic and Complexity Theory. Cambridge University Press (1995)
Krajicek, J., Pudlák, P., Woods, A.: Exponential lower bound to the size of bounded depth Frege proofs of the pigeonhole principle. Random Structures and Algorithms 7(1), 15–39 (1995)
Krajicek, J.: Diagonalization in proof complexity. Fundamenta Mathematicae 182, 181–192 (2004)
Krajíček, J.: Implicit proofs. Journal of Symbolic Logic 69(2), 387–397 (2004)
de Longueville, M.: 25 years proof of the Kneser conjecture: The advent of topological combinatorics. EMS Newsletter 53, 16–19 (2004)
de Longueville, M.: A Course in Topological Combinatorics. Springer (2012)
Lovász, L.: Kneser’s conjecture, chromatic number, and homotopy. Journal of Combinatorial Theory, Series A 25, 319–324 (1978)
Matoušek, J.: A combinatorial proof of Kneser’s conjecture. Combinatorica 24(1), 163–170 (2004)
Matoušek, J.: Using the Borsuk-Ulam Theorem, 2nd edn. Springer (2008)
Pálvölgyi, D.: 2D-TUCKER is PPAD-complete. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 569–574. Springer, Heidelberg (2009)
Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. Journal of Computer and System Sciences 48(3), 498–532 (1994)
Pitassi, T., Beame, P., Impagliazzo, R.: Exponential lower bounds for the pigeonhole principle. Computational Complexity 3(2), 97–140 (1993)
Schrijver, A.: Vertex-critical subgraphs of Kneser graphs. Nieuw Arch. Wiskd., III. Ser. 26, 454–461 (1978)
Stahl, S.: n-tuple colorings and associated graphs. Journal of Combinatorial Theory B 20(3), 185–203 (1976)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Istrate, G., Crãciun, A. (2014). Proof Complexity and the Kneser-Lovász Theorem. In: Sinz, C., Egly, U. (eds) Theory and Applications of Satisfiability Testing – SAT 2014. SAT 2014. Lecture Notes in Computer Science, vol 8561. Springer, Cham. https://doi.org/10.1007/978-3-319-09284-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-09284-3_11
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09283-6
Online ISBN: 978-3-319-09284-3
eBook Packages: Computer ScienceComputer Science (R0)