Skip to main content

Global Voting Model for Protein Function Prediction from Protein-Protein Interaction Networks

  • Conference paper
Intelligent Computing in Bioinformatics (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8590))

Included in the following conference series:

  • 3553 Accesses

Abstract

It is known that the observed PPI network is incomplete with low coverage and high rate of false positives and false negatives. Computational approach is likely to be overwhelmed by the high level of noises and incompleteness if relying on local topological information.We propose a global voting (GV) model to predict protein function by exploiting the entire topology of the network. GV consistently assigns function to unannotated proteins through a global voting procedure in which all of the annotated proteins participate. It assigns a list of function candidates to a target protein with each attached a probability score. The probability indicates the confidence level of the potential function assignment. We apply GV model to a yeast PPI network and test the robustness of the model against noise by random insertion and deletion of true PPIs. The results demonstrate that GV model can robustly infer the function of the proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped blast and psi-blast: a new generation of protein data base search programs. Nucl. Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  2. Chen, X., Liu, M.: Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 21, 4394–4400 (2005)

    Article  Google Scholar 

  3. Chua, H.N., Sung, W.K., Wong, L.: Exploiting indirect neighbors and topological weight to predict protein function from protein-protein interactions. Bioinformatics 22, 1623–1630 (2006)

    Article  Google Scholar 

  4. Deane, C.M., Salwinski, L., Xenarios, O., Eisenberg, D.: Protein interactions: two methods for assessment of the reliability of high through put observations. Molecular & Cellular Proteomics: MCP 1, 349–356 (2002)

    Article  Google Scholar 

  5. Deng, M., Zhang, K., Mehta, S., Chen, T., Sun, F.: Prediction of protein function using protein-protein interaction data. Journal of Computational Biology 10, 947–960 (2003)

    Article  Google Scholar 

  6. Deng, M., Tu, Z., Sun, F., Chen, T.: Mapping gene ontology to proteins based on protein C protein interaction data. Bioinformatics 20(6), 895–902 (2004)

    Article  Google Scholar 

  7. Edwards, A., Kus, B., Jansen, R., Greenbaum, D., Greenblatt, J., et al.: Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends in Genetics 18, 529–536 (2002)

    Article  Google Scholar 

  8. Freschi, V.: Protein function prediction from interaction networks using a random walk ranking algorithm. In: Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering, BIBE 2007, pp. 42–48 (2007)

    Google Scholar 

  9. Giot, L., Bader, J., Brouwer, C., Chaudhuri, A., Kuang, B., et al.: A protein interaction map of drosophila melanogaster. Science 302, 1727–1736 (2003)

    Article  Google Scholar 

  10. Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., Takagi, T.: Assessment of prediction accuracy of protein function from protein-protein interaction data. Yeast 18, 523–531 (2001)

    Article  Google Scholar 

  11. Hu, P., Bader, G., Wigle, D.A., Emili, A.: Computational prediction of cancer-gene function. Nature Reviews Cancer 7, 23–34 (2007)

    Article  Google Scholar 

  12. Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., et al.: Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proceedings of the National Academy of Sciences of the United States of America 97, 1143–1147 (2000)

    Article  Google Scholar 

  13. Karaoz, U., Murali, T., Letovsky, S., Zheng, Y., Ding, C.: Whole-genome annotation by using evidence integration in functional-linkage networks. Proceedings of the National Academy of Sciences of the United States of America 101, 2888–2893 (2004)

    Article  Google Scholar 

  14. Kourmpetis, Y.A.I., van Dijk, A.D.J., Bink, M.C.A.M., van Ham, R.C.H.J., ter Braak, C.J.F.: Bayesian markov random field analysis for protein function prediction based on network data. PLoS One 5 (2010)

    Google Scholar 

  15. Krogan, N., Cagney, G., Yu, H., Zhong, G., Guo, X., et al.: Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature 440, 637–643 (2006)

    Article  Google Scholar 

  16. Kuchaiev, O., Rasajski, M., Higham, D., Przulj, N.: Geometric de-noising of protein-protein interaction networks. Plos Computational Biology 5 (2009)

    Google Scholar 

  17. Lafon, S., Keller, Y., Coifman, R.: Data fusion and multi cue data matching by diffusion maps. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1784–1797 (2006)

    Article  Google Scholar 

  18. Lerman, G., Shakhnovich, B.: Defining functional distance using manifold embeddings of gene ontology annotations. Proceedings of the National Academy of Sciences of the United States of America 104, 11334–11339 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mewes, H.W., Frishman, D., Guldener, U., Mannhaupt, G., Mayer, K., Mokrejs, M., Morgenstern, B., Munsterkotter, M., Rudd, S., Weil, B.: Mips: a database for genomes and protein sequences. Nucleic Acid Research 30, 31–34 (2002)

    Article  Google Scholar 

  20. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics 21, i302–i310 (2005)

    Google Scholar 

  21. Pawson, T., Gish, G., Nash, P.: Sh2 domains, interaction modules and cellular wiring. Trends in Cell Biology 11, 504–511 (2001)

    Article  Google Scholar 

  22. Provost, F.J., Fawcett, T.: Analysis and visualization of classier performance: Comparison under imprecise class and cost distributions. In: KDD, pp. 43–48 (1997)

    Google Scholar 

  23. Punta, M., Ofran, Y.: The rough guide to insilico function prediction, orhow to use sequence and structure information to predict protein function. PLoS Computational Biology 4 (2008)

    Google Scholar 

  24. Rahmani, H., Blockeel, H., Bender, A.: Predicting the functions of proteins in ppi networks from global information. JMLR: Workshop and Conference. In: Proceedings, International Workshop on Machine Learning in Systems Biology, Ljubljana, Slovenia, vol. 8, pp. 82–97 (2010)

    Google Scholar 

  25. Schwikowski, B., Uetz, P., Field, S.: A network of protein-protein interactions in yeast. Nature Biotechnology 18, 1257–1261 (2000)

    Article  Google Scholar 

  26. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function. Molecular Systems Biology 3, 1–13 (2007)

    Article  Google Scholar 

  27. Shoemaker, B.A., Panchenko, A.R.: Deciphering protein c protein interactions. part i. experimental techniques and databases. PLoS Comput. Biol. 3 (2007a)

    Google Scholar 

  28. Shoemaker, B.A., Panchenko, A.R.: Deciphering protein c protein interactions. part ii. computational methods to predict protein and domain interaction partners. PLoS Comput. Biol. 3 (2007b)

    Google Scholar 

  29. Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F., et al.: A human protein-protein interaction network: A resource for annotating the proteome. Cell 122, 957–968 (2005)

    Article  Google Scholar 

  30. Uetz, P., Giot, L., Cagney, G., Mansfield, T., Judson, R., et al.: A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature 403, 623–627 (2000)

    Article  Google Scholar 

  31. Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function prediction from protein-protein interaction networks. Nature Biotechnology 21, 697–700 (2003)

    Article  Google Scholar 

  32. Von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S., et al.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Fang, Y., Sun, M., Dai, G., Ramani, K. (2014). Global Voting Model for Protein Function Prediction from Protein-Protein Interaction Networks. In: Huang, DS., Han, K., Gromiha, M. (eds) Intelligent Computing in Bioinformatics. ICIC 2014. Lecture Notes in Computer Science(), vol 8590. Springer, Cham. https://doi.org/10.1007/978-3-319-09330-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09330-7_54

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09329-1

  • Online ISBN: 978-3-319-09330-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics