Skip to main content

An Optimal Probabilistic Transformation of Belief Functions Based on Artificial Bee Colony Algorithm

  • Conference paper
Intelligent Computing Theory (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8588))

Included in the following conference series:

  • 2928 Accesses

Abstract

One of the key issues in the applications of Dempster-Shafer evidence theory is how to make a decision based on Basic Probability Assignment (BPA). Besides the widely known pignistic transformation of belief functions, another conventional method is Plausibility Transformation, which transforms BPA to probability distribution by normalizing plausibility function of every singleton proposition. However, these two methods are stuck with the problem of impreciseness. To overcome this drawback, a new transformation method based on Artificial Bee Colony Algorithm is proposed. The obtained probability has the maximum correlation coefficient with the original BPA. Numerical examples are used to illustrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dempster, A.P.: Upper and Lower Probabilities Induced by a Multivalued Mapping. The Annals of Mathematical Statistics 38(2), 325–339 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  2. Shafer, G.: A Mathematical Theory of Evidence. Princeton U. P., Princeton (1976)

    MATH  Google Scholar 

  3. Beynon, M., Cosker, D., Marshall, D.: An expert system for multi-criteria decision making using Dempster-Shafer theory. Expert Systems with Applications 20, 357–367 (2001)

    Article  Google Scholar 

  4. Benferhat, S., Saffiotti, A., Smets, P.: Belief functions and default reasoning. Artificial Intelligence 122, 1–69 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Jones, R.W., Lowe, A., Harrison, M.J.: A framework for intelligent medical diagnosis using the theory of evidence. Knowledge-Based Systems 15, 77–84 (2002)

    Article  Google Scholar 

  6. Liu, Z.G., Pan, Q., Dezert, J.: Evidential classifier for imprecise data based on belief functions. Knowledge-Based Systems 52, 246–257 (2013)

    Article  Google Scholar 

  7. Reformat, M., Yager, R.R.: Building ensemble classifiers using belief functions and OWA operators. Soft Comput. 12, 543–558 (2008)

    Article  MATH  Google Scholar 

  8. Laha, A., Pal, N.R., Das, J.: Land cover classification using fuzzy rules and aggregation of contextual information through evidence theory. IEEE Transactions on Geoscience and Remote Sensing 44(6), 1633–1641 (2006)

    Article  Google Scholar 

  9. Telmoudi, A., Chakhar, S.: Data fusion application from evidential databases as a support for decision making. Information and Software Technology 46(8), 547–555 (2004)

    Article  Google Scholar 

  10. Wu, W.Z., Zhang, M., Li, H.Z.: Knowledge reduction in random information systems via Dempster-Shafer theory of evidence. Information Sciences 174, 143–164 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Aggarwal, P., Bhatt, D., Devabhaktuni, V.: Dempster Shafer neural network algorithm for land vehicle navigation application. Information Sciences 253, 26–33 (2013)

    Article  Google Scholar 

  12. Su, Z.G., Wang, Y.F., Wang, P.H.: Parametric regression analysis of imprecise and uncertain data in the fuzzy belief function framework. International Journal of Approximate Reasoning 54, 1217–1242 (2013)

    Article  MathSciNet  Google Scholar 

  13. Denoeux, T.: Maximum likelihood estimation from uncertain data in the belief function framework. IEEE Transactions on Knowledge and Data Engineering 25(1), 119–130 (2013)

    Article  Google Scholar 

  14. Yang, Y., Han, D.Q., Han, C.Z.: Discounted combination of unreliable evidence using degree of disagreement. International Journal of Approximate Reasoning 54, 1197–1216 (2013)

    Article  Google Scholar 

  15. Jousselme, A.-L., Maupin, P.: Distances in evidence theory: Comprehensive survey and generalizations. International Journal of Approximate Reasoning 53, 118–145 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lefevre, E., Colot, O., Vannoorenberghe, P.: Belief functions combination and conflict management. Information Fusion 3(2), 149–162 (2002)

    Article  Google Scholar 

  17. Florea, M.C., Jousselme, A.-L., Bosse, E.: Robust combination rules for evidence theory. Information Fusion 10(2), 183–197 (2009)

    Article  Google Scholar 

  18. Schubert, J.: Conflict management in Dempster-Shafer theory using the degree of falsity. International Journal of Approximate Reasoning 52(3), 449–460 (2011)

    Article  MathSciNet  Google Scholar 

  19. Baroni, P., Vicig, P.: Transformations from Imprecise to Precise Probabilities. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 37–49. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Cobb, B.R., Shenoy, P.P.: A Comparison of Methods for Transforming Belief Function Models to Probability Models. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 255–266. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Daniel, M.: Transformations of Belief Functions to Probabilities. In: Vejnarova, J. (ed.) Proceedings of 6th Workshop on Uncertainty Processing (WUPES 2003), pp. 77–90. V SE Oeconomica Publishers (2003)

    Google Scholar 

  22. Daniel, M.: Consistency of Probabilistic Transformations of Belief Functions. In: Proceedings of the Tenth International Conference IPMU, pp. 1135–1142 (2004)

    Google Scholar 

  23. Sudano, J.J.: Pignistic Probability transforms for Mixes of Low and High Probability Events. In: Proc. of the 4th Int. Conf. on Information Fusion (Fusion 2001), Montreal, Canada, TUB3, pp. 23–27 (2001)

    Google Scholar 

  24. Sudano, J.J.: Equivalence Between Belief Theories and Naive Bayesian Fusion for Systems with Independent Evidential Data: Part II, the Example. In: Proc. of the 6th Int. Conf. on Information Fusion (Fusion 2003), Cairns, Australia, pp. 1357–1364 (2003)

    Google Scholar 

  25. Smets, P.: Decision Making in a Context where Uncertainty is Represented by Belief Functions. In: Srivastava, R.P., Mock, T.J. (eds.) Belief Functions in Business Decision, pp. 17–61. Physica-Verlag, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Smets, P.: Decision Making in the TBM: the Necessity of the Pignistic Transformation. International Journal of Approximative Reasoning 38, 133–147 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Jousselme, A.-L., Grenier, D., Bosse, E.: A new distance between two bodies of evidence. Information Fusion 2, 91–101 (2001)

    Article  Google Scholar 

  28. Xu, P.D., Wu, J.Y., Li, Y.: A method for translating belief function models to probability models. Journal of Information and Computational Science 8, 1817–1823 (2011)

    Google Scholar 

  29. Xu, P.D., Han, D.Q., Deng, Y.: An optimal transformation of basic probability assignment to probability. Acta Electronica Sinica 39, 121–125 (2011)

    Google Scholar 

  30. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics 26, 29–41 (1996)

    Article  Google Scholar 

  31. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

    Google Scholar 

  32. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization 39, 459–471 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Karaboga, D., Basturk, B.: A comparative study of artificial bee colony algorithm. Applied Mathematics and Computation 214, 108–132 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Song, Y., Wang, X., Lei, L., Xue, A. (2014). An Optimal Probabilistic Transformation of Belief Functions Based on Artificial Bee Colony Algorithm. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theory. ICIC 2014. Lecture Notes in Computer Science, vol 8588. Springer, Cham. https://doi.org/10.1007/978-3-319-09333-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09333-8_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09332-1

  • Online ISBN: 978-3-319-09333-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics