Abstract
In this paper, we present a fast hypervolume-based multi-objective local search algorithm, where the fitness assignment is realized by the approximating computation of hypervolume contribution. In the algorithm, we define an approximate hypervolume contribution indicator as the selection mechanism and apply this indicator to an iterated local search. We carry out a range of experiments on three-objective flow shop problem. Experimental results indicate that our algorithm is highly effective in comparison with the algorithms based on the binary indicators and the exact hypervolume contribution indicator.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-objective optimization. IEEE Transactions on Evolutionary Computation 19(1), 45–76 (2011)
Basseur, M., Liefooghe, A., Le, K., Burke, E.: The efficiency of indicator-based local search for multi-objective combinatorial optimization problems. Journal of Heuristics 18(2), 263–296 (2012)
Basseur, M., Zeng, R.-Q., Hao, J.-K.: Hypervolume-based multi-objective local search. Neural Computing and Applications 21(8), 1917–1929 (2012)
Basseur, M., Seynhaeve, F., Talbi, E.-G.: Design of multi-objective evolutionary algorithms: application to the flow-shop scheduling problem. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2002), Honlulu, USA, vol. 2, pp. 1151–1156 (2002)
Bradstreet, L., While, L., Braone, L.: A fast incremental hypervolume algorithm. IEEE Transactions on Evolutionary Computation 12(6), 714–723 (2008)
Bringmann, K., Friedrich, T.: Don’t be greedy when calculating hypervolume contributions. In: FOGA 1990: Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms, pp. 103–112. ACM, New York (2009)
Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation). Springer-Verlag New York, Inc., Secaucus (2006)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2000)
Du, J., Leung, J.Y.-T.: Minimizing total tardiness on one machine is NP-hard. Mathematics of Operations Research 15, 483–495 (1990)
Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms – part II: application example. Mathematics of Operations Research 28(1), 38–47 (1998)
Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 5, 287–326 (1979)
Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Operational Research 64, 278–285 (1993)
While, R.L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Transactions on Evolutionary Computation 10(1), 29–38 (2006)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. TIK Report 103, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Zurich, Switzerland (2001)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analusis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zeng, RQ., Shang, MS. (2014). Solving Three-Objective Flow Shop Problem with Fast Hypervolume-Based Local Search Algorithm. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-09339-0_2
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09338-3
Online ISBN: 978-3-319-09339-0
eBook Packages: Computer ScienceComputer Science (R0)