Abstract
Active learning(AL) is an effective method in definition of samples, especially when labeled sample number is small. In this paper, we propose two active learning algorithms, which are Random Sampling (RS) and Margin Sampling(MS) algorithms, the two techniques achieve semiautomatic definition of training samples in remote sensing image classification, starting with a small and representative data set, then according to query criterion, the experts select informative samples to add training data set, the model builds the optimal set of samples which minimizes the classification error. Compared with traditional sample selection methods, the results denote the effectiveness of the proposed AL methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
Pozdnoukhov, A., Kanevski, M.: Monitoring Network Optimisation for Spatial Data Classification Using Support Vector Machines. Int. J. Environ. Pollut. 28(3/4), 465–484 (2006)
Luo, T., Kramer, K., Goldgof, D.B., Hall, L.O., Samson, S., Remsen, A., Hopkins, T.: Active learning to recognize multiple types of plankton. J. Mach. Learn. Res. 6, 589–613 (2005)
Li, X., Wang, L., Sung, E.: Multilabel SVM Active Learning for Image Classification. In: Proc. ICIP, Singapore, pp. 2207–2210 (2004)
Jing, F., Li, M., Zhang, H., Zhang, B.: Entropy-based Active Learning with Support Vector Machines for Content-based Image Retrieval. In: Proc. IEEE ICME, Taipei, Taiwan, pp. 85–88 (2004)
Cheng, S., Shih, F.Y.: An Improved Incremental Training Algorithm for Support Vector Machines Using Active Query. Pattern Recognition 40(3), 964–971 (2007)
Gosselin, P.H., Cord, M.: Precision-oriented Active Selection for Interactive Image Retrieval. In: Proc. IEEE ICIP, Atlanta, GA, pp. 3197–3200 (2006)
Ferecatu, M., Boujemaa, N.: Interactive Remote-sensing Image Retrieval Using Active Relevance Feedback. IEEE Trans. Geosci. Remote Sens. 45(4), 818–826 (2007)
Liu, A., Jun, G., Ghosh, J.: Active Learning of Hyperspectral Data with Spatially Dependent Label Acquisition Costs. In: 2009 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2009, pp. 256–259. IEEE (2009)
Tuia, D., Volpi, M., Copa, L., et al.: A Survey of Active Learning Algorithms for Supervised Remote Sensing Image Classification. IEEE Journal of Selected Topics in Signal Processing 5(3), 606–617 (2011)
Demir, B., Persello, C., Bruzzone, L.: Batch-mode Active-learning Methods for The Interactive Classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing 49(3), 1014–1031 (2011)
AVIRIS NW Indiana’s Indian Pines 1992 data set (1992), ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C (original files), ftp://ftp.ecn.purdue.edu/biehl/PC_MultiSpec/ThyFiles.zip (ground truth)
Melgani, F., Bruzzone, L.: Classification of Hyperspectral Remote Sensing Images with Support Vector Machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)
Chang, C.-C., Lin, C.-J.: LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), http://www.csie.ntu.edu.tw/~cjlin/libsvm
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Ding, S., Li, B., Fu, X. (2014). Active Learning Methods for Classification of Hyperspectral Remote Sensing Image. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_49
Download citation
DOI: https://doi.org/10.1007/978-3-319-09339-0_49
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09338-3
Online ISBN: 978-3-319-09339-0
eBook Packages: Computer ScienceComputer Science (R0)