Abstract
With the employment of GPS embedded device, large numbers of data has been collected from location aware applications. It is interesting and challenging to discover meaningful information behind the data. Since the GPS data contains the time information, we take use of the time stamps of the GPS data in this paper for better discovering the places of interest. The collection usually contains large amounts of trajectories, where not every point has information. Therefore, a time stamp clustering algorithm is firstly proposed to reduce the size of raw data and also extract the points with more information. Different clustering algorithms are then conducted on the pre-processed data for extracting the places of interest. Finally, we compare the clustering algorithms on the GPS data by several external validity indexes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Giannotti, F., Nanni, M., Pinelli, F., et al.: Trajectory pattern mining. In: Proc. KDD, pp. 330–339 (2007)
Mamoulis, N., Cao, H., Kollios, G., et al.: Mining, indexing, and querying historical spatiotemporal data. In: Proc. KDD, pp. 236–245 (2004)
Hwang, S.-Y., Liu, Y.-H., Chiu, J.-K., Lim, E.-p.: Mining mobile group patterns: A trajectory-based approach. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 713–718. Springer, Heidelberg (2005)
Monreale, A., Pinelli, F., Trasarti, R., et al.: Wherenext: a location predictor on trajectory pattern mining. In: Proc. KDD, pp. 637–646 (2009)
Khetarpaul, S., Chauhan, R., Gupta, S., et al.: Mining GPS data to determine interesting locations. In: Proc. WWW, p. 8 (2011)
Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing 7, 275–286 (2003)
Zhou, C., Frankowski, D., Ludford, P., et al.: Discovering personal gazetteers: an interactive clustering approach. In: Proc. GIS, pp. 266–273 (2004)
Alvares, L., Bogorny, V., Kuijpers, B., et al.: A model for enriching trajectories with semantic geographical information. In: Proc. GIS (2007)
Kang, J., Welbourne, W., Stewart, B., et al.: Extracting places from traces of locations. In: Proc. MobiCom, pp. 110–118 (2004)
Hariharan, R., Toyama, K.: Project lachesis: Parsing and modeling location histories. In: Egenhofer, M., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 106–124. Springer, Heidelberg (2004)
Foote, J.: Automatic audio segmentation using a measure of audio novelty. In: Proc. ICME, pp. 452–455 (2000)
Zheng, Y., Zhang, L., Xie, X., et al.: Mining interesting locations and travel sequences from GPS trajectories. In: Proc. WWW, pp. 791–800 (2009)
Zhao, Q., Xu, M., et al.: Expanding external validity measures for determining the number of clusters. In: Proc. Intelligent Systems Design and Applications, pp. 931–936 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhou, J., Zhao, Q., Li, H. (2014). Integrating Time Stamps into Discovering the Places of Interest. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_58
Download citation
DOI: https://doi.org/10.1007/978-3-319-09339-0_58
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09338-3
Online ISBN: 978-3-319-09339-0
eBook Packages: Computer ScienceComputer Science (R0)