Skip to main content

Integrating Time Stamps into Discovering the Places of Interest

  • Conference paper
Intelligent Computing Methodologies (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8589))

Included in the following conference series:

  • 3500 Accesses

Abstract

With the employment of GPS embedded device, large numbers of data has been collected from location aware applications. It is interesting and challenging to discover meaningful information behind the data. Since the GPS data contains the time information, we take use of the time stamps of the GPS data in this paper for better discovering the places of interest. The collection usually contains large amounts of trajectories, where not every point has information. Therefore, a time stamp clustering algorithm is firstly proposed to reduce the size of raw data and also extract the points with more information. Different clustering algorithms are then conducted on the pre-processed data for extracting the places of interest. Finally, we compare the clustering algorithms on the GPS data by several external validity indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Giannotti, F., Nanni, M., Pinelli, F., et al.: Trajectory pattern mining. In: Proc. KDD, pp. 330–339 (2007)

    Google Scholar 

  2. Mamoulis, N., Cao, H., Kollios, G., et al.: Mining, indexing, and querying historical spatiotemporal data. In: Proc. KDD, pp. 236–245 (2004)

    Google Scholar 

  3. Hwang, S.-Y., Liu, Y.-H., Chiu, J.-K., Lim, E.-p.: Mining mobile group patterns: A trajectory-based approach. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 713–718. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Monreale, A., Pinelli, F., Trasarti, R., et al.: Wherenext: a location predictor on trajectory pattern mining. In: Proc. KDD, pp. 637–646 (2009)

    Google Scholar 

  5. Khetarpaul, S., Chauhan, R., Gupta, S., et al.: Mining GPS data to determine interesting locations. In: Proc. WWW, p. 8 (2011)

    Google Scholar 

  6. Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict movement across multiple users. Personal and Ubiquitous Computing 7, 275–286 (2003)

    Article  Google Scholar 

  7. Zhou, C., Frankowski, D., Ludford, P., et al.: Discovering personal gazetteers: an interactive clustering approach. In: Proc. GIS, pp. 266–273 (2004)

    Google Scholar 

  8. Alvares, L., Bogorny, V., Kuijpers, B., et al.: A model for enriching trajectories with semantic geographical information. In: Proc. GIS (2007)

    Google Scholar 

  9. Kang, J., Welbourne, W., Stewart, B., et al.: Extracting places from traces of locations. In: Proc. MobiCom, pp. 110–118 (2004)

    Google Scholar 

  10. Hariharan, R., Toyama, K.: Project lachesis: Parsing and modeling location histories. In: Egenhofer, M., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 106–124. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Foote, J.: Automatic audio segmentation using a measure of audio novelty. In: Proc. ICME, pp. 452–455 (2000)

    Google Scholar 

  12. Zheng, Y., Zhang, L., Xie, X., et al.: Mining interesting locations and travel sequences from GPS trajectories. In: Proc. WWW, pp. 791–800 (2009)

    Google Scholar 

  13. Zhao, Q., Xu, M., et al.: Expanding external validity measures for determining the number of clusters. In: Proc. Intelligent Systems Design and Applications, pp. 931–936 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhou, J., Zhao, Q., Li, H. (2014). Integrating Time Stamps into Discovering the Places of Interest. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09339-0_58

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09338-3

  • Online ISBN: 978-3-319-09339-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics