Skip to main content

Simulated Annealing Based Algorithm for Mutated Driver Pathways Detecting

  • Conference paper
Intelligent Computing Methodologies (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8589))

Included in the following conference series:

Abstract

With the development of Next-generation DNA sequencing technologies, one of the challenges is to distinguish functional mutations vital for cancer development, and filter out the unfunctional and random “passenger mutations.” In this study, we introduce a modified method to solve the so-called maximum weight submatrix problem which is based on two combinatorial properties, i.e., coverage and exclusivity. This problem can be used to find driver mutations. Particularly, we enhance an integrative model which combines mutation and expression data. We apply our method to simulated data, the experiment shows that our method is efficiency. Then we apply our proposed method onto real biological datasets, the results also show that it is applicable in real applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100, 57–70 (2000)

    Article  Google Scholar 

  2. Greenman, C., et al.: Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007)

    Article  Google Scholar 

  3. Ding, L., et al.: Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008)

    Article  Google Scholar 

  4. Jones, S., et al.: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008)

    Article  Google Scholar 

  5. Hahn, W.C., et al.: Modelling the molecular circuitry of cancer. Nat. Rev. Cancer 2, 331–341 (2002)

    Article  Google Scholar 

  6. Vogelstein, B., et al.: Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004)

    Article  Google Scholar 

  7. The Cancer Genome Atlas Research Network (TCGA): Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008)

    Google Scholar 

  8. Kanehisa, M., Goto, S.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000)

    Article  Google Scholar 

  9. Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., et al.: STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, D412–D416 (2009)

    Google Scholar 

  10. Keshava Prasad, T.S., Goel, R., Kandasamy, K., Keerthikumar, S.A., et al.: Human Protein Reference Database—2009 update. Nucleic Acids Res.37, D767–D772 (2009)

    Google Scholar 

  11. Vandin, F., et al.: De novo discovery of mutated driver pathways in cancer. Genome Res. 22, 375–385 (2012)

    Article  Google Scholar 

  12. Sharda, R., Vob, S., Woodruff, D.L., Fink, A.: Optimization software class libraries, pp. 91–94. Springer, Berlin (2003)

    Google Scholar 

  13. Zhao, J., et al.: Efficient methods for identifying mutated driver pathways in cancer. Bioinformatics 28(22), 2940–2947 (2012)

    Article  Google Scholar 

  14. Khanna, K.K., Keating, K.E., Kozlov, S., Scott, S., Gatei, M., Hobson, K., Taya, Y., Gabrielli, B., Chan, D., Lees-Miller, S.P., et al.: ATM associates with and phosphorylates p53: Mapping the region of interaction. Nat. Genet. 20, 398–400 (1998)

    Article  Google Scholar 

  15. Chehab, N.H., Malikzay, A., Appel, M., Halazonetis, T.D.: Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes. Dev. 14, 278–288 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yan, C., Li, HT., Guo, AX., Sha, W., Zheng, CH. (2014). Simulated Annealing Based Algorithm for Mutated Driver Pathways Detecting. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09339-0_66

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09338-3

  • Online ISBN: 978-3-319-09339-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics