Skip to main content

Prediction of Physical Time Series Using Spiking Neural Networks

  • Conference paper
Intelligent Computing Methodologies (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8589))

Included in the following conference series:

  • 3480 Accesses

Abstract

Forecasting the behavior of naturally occurring phenomena by the analysis of time series based data is the basis of scientific experimental design. In this paper, we consider a novel application of a Polychronous Spiking Network for the prediction of sunspot and auroral electrojet index by exploiting the inherent temporal capabilities of this spiking neural model. The performance of this network is benchmarked against two “traditional”, rateencoded, neural networks; a Multi-Layer Perceptron network and a Functional Link Neural Network. The results indicate that the inherent temporal characteristics of the Polychronous Spiking Network make it extremely well suited to the processing of time series based data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Makhoul, J.: Linear prediction: A tutorial review. Proceedings of the IEEE 63(4), 561–580 (1975)

    Article  Google Scholar 

  2. Conner, J., Atlas, L.: Recurrent neural networks and time series prediction. In: IEEE International Joint Conference on Neural Networks, New York, USA, pp. I 301- I 306 (1991)

    Google Scholar 

  3. Rape, R., Fefer, D., Drnovsek, J.: Time series prediction with neural networks: a case of two examples. In: IEEE Instrumentation and Measurement Technology Conference, Hammamatsu, Shizuoka, Japan, May 10-12, pp. 145–148 (1994)

    Google Scholar 

  4. Singh, S.: Fuzzy Nearest Neighbour Method for Time-Series Forecasting. In: Proc. 6th European Congress on Intelligent Techniques and Soft Computing (EUFIT 1998), pp. 1901–1905 (1998)

    Google Scholar 

  5. Tokinga, S., Moriyasu, H., Miyazaki, A., Shimazu, N.,, N.: A forecasting method for time series with fractal geometry and its application. Electronic and Communications in Japan, part 3, 82(3), 31–39 (1999)

    Google Scholar 

  6. Draye, J.S., Pavisic, D.A., Cheron, G.A., Libert, G.A.: Dynamic recurrent neural networks: a dynamic analysis. IEEE Transactions on Systems, Man, and Cybernetics-Part B 26(5), 692–706 (1996)

    Article  Google Scholar 

  7. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  8. Abeles, M.: Corticonics: Neural circuits of the cerebral cortex. Cambridge University Press, New-York (1991)

    Book  Google Scholar 

  9. Maass, W.: Networks of Spiking Neurons: The Third Generation of Neural Network Models. Neural Networks 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  10. Maass, W., Bishop, C.M.: Pulsed Neural Networks. MIT press (1998) ISBN 0-262-13350-4

    Google Scholar 

  11. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  12. Legenstein, R., Naeger, C., Maass, W.: What can a Neuron Learn with Spike-Timing-Dependent-Plasticty. Journal of Neural Computation 17(11), 2337–2382 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nessler, B., Pfeiffer, M., Maass, W.: STDP enables spiking neurons to detect hidden causes of their inputs. In: Proc. of NIPS 2009: Advances in Neural Information Processing Systems, vol. 22, pp. 1357–1365. MIT Press (2010)

    Google Scholar 

  14. Levy, W.B., Steward, O.: Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8(4), 791–797 (1983)

    Article  Google Scholar 

  15. Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297), 5–213 (1997)

    Article  Google Scholar 

  16. Izhikevich, E.M.: Polychronization: Computation with Spikes. Journal of Neural Computation 18(2), 245–282 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Arthur, J.V., Boahen, K.A.: Synchrony in Silicon: The Gamma Rhythm. IEEE Transactions on Neural Networks 18(6) (2007)

    Google Scholar 

  18. Edelman, G.M.: Neural Darwinism: Theory if Neuronal Group Selection. Basic Books, New York (1987)

    Google Scholar 

  19. Huang, C., Loh, C.: Nonlinear Identification of Dynamic Systems Using Neural Networks. Computer-Aided Civil and Infrastructure Engineering 16, 28–41 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Reid, D., Hussain, A.J., Tawfik, H., Ghazali, R. (2014). Prediction of Physical Time Series Using Spiking Neural Networks. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09339-0_82

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09338-3

  • Online ISBN: 978-3-319-09339-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics