Skip to main content

A Minimum Attention Control Law for Ball Catching

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8608))

Included in the following conference series:

Abstract

We present an attention-minimizing LQR-based feedback control law for vision-based ball catching. Taking Brockett’s control attention functional as our performance criterion, and under the simplifying assumption that the optimal control law is the sum of a linear time-varying feedback term and a time-varying feedforward term, we show that our control law is stable, and easily obtained as the solution to a finite-dimensional optimization problem over the set of symmetric positive-definite matrices. We perform numerical experiments for robotic ball-catching and compare our control law with a discretized version obtained as the solution to a mathematical programming problem. Like human ball catching, our results also exhibit the familiar transition from open-loop to closed-loop control during the catching movement, and also show improved robustness to spatiotemporal quantization. Our approach is applicable to more general control settings in which multi-tasking must be performed under limited computation and communication resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brockett, R.W.: Minimum attention control. In: Proc. IEEE Int. Conf. Decision and Control, pp. 2628–2632 (1997)

    Google Scholar 

  2. Brockett, R.W.: Minimizing attention in a motion control context. In: Proc. IEEE Int. Conf. Decision and Control, pp. 3349–3352 (2003)

    Google Scholar 

  3. Brockett, R.W.: Notes on the control of the Liouville equation. In: Control of Partial Differential Equations. Lectures Notes in Mathematics, vol. 2048, Springer, Berlin

    Google Scholar 

  4. Woodworth, R.S.: Accuracy of voluntary movement. The Psychological Review: Monograph Supplements 3(3) (1899)

    Google Scholar 

  5. Zago, M., McIntyre, J., Senot, P., Lacquaniti, F.: Visuo-motor coordination and internal models for object interception. Experimental Brain Research 192(4), 571–604 (2009)

    Article  Google Scholar 

  6. Dessing, J.C., Peper, C.L.E., Bullock, D., Beek, P.J.: How position, velocity, and temporal information combine in the prospective control of catching: data and model. Journal of Cognitive Neuroscience 17(4), 668–686 (2005)

    Article  Google Scholar 

  7. Yeo, S.H., Lesmana, M., Neog, D.R., Pai, D.K.: Eyecatch: simulating visuomotor coordination for object interception. ACM Transactions on Graphics (TOG) 31(4) (2012)

    Google Scholar 

  8. Flasskamp, K., Murphey, T., Ober-Blobaum, S.: Switching time optimization in discretized hybrid dynamical systems. In: Proc. IEEE Conf. Decision and Control, pp. 707–712 (2012)

    Google Scholar 

  9. Nair, G., Fagnani, F., Zampieri, S., Evans, R.J.: Feedback control under data rate constraints: an overview. Proc. IEEE 95(1), 108–137 (2007)

    Article  Google Scholar 

  10. Hristu, D.: Optimal Control with Limited Communication. Ph.D. dissertation, Harvard University, Cambridge Massachusetts (1999)

    Google Scholar 

  11. Liberzon, D.: Hybrid feedback stabilization of systems with quantized signals. Automatica 39, 1543–1554 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, K., Baillieul, J.: Robust and efficient quantization and coding for control of multidimensional linear systems under data rate constraints. Int. J. Robust Nonlinear Control 17, 898–920 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kirk, D.E.: Optimal control theory: an introduction. Courier Dover Publications (2012)

    Google Scholar 

  14. Sideris, A., Bobrow, J.E.: An efficient sequential linear quadratic algorithm for solving nonlinear optimal control problems. IEEE Transactions on Automatic Control 50(12), 2043–2047 (2005)

    Article  MathSciNet  Google Scholar 

  15. Khalil, H.K., Grizzle, J.W.: Nonlinear systems, vol. 3. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  16. Lee, S., Park, F.C.: Mobile robot motion primitives that take into account the cost of control. In: Latest Advances in Robot Kinematics, pp. 429–436. Springer, Netherlands (2012)

    Google Scholar 

  17. Nakano, E., Imamizu, H., Osu, R., Uno, Y., Gomi, H., Yoshioka, T., Kawato, M.: Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J. Neurophysiology 81, 2140–2155 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Jang, C., Lee, Je., Lee, S., Park, F.C. (2014). A Minimum Attention Control Law for Ball Catching. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science(), vol 8608. Springer, Cham. https://doi.org/10.1007/978-3-319-09435-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09435-9_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09434-2

  • Online ISBN: 978-3-319-09435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics