Skip to main content

A Self-organising Animat Body Map

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8608))

Included in the following conference series:

Abstract

Self-organising maps can recreate many of the essential features of the known functional organisation of primary cortical areas in the mammalian brain. According to such models, cortical maps represent the spatial-temporal structure of sensory and/or motor input patterns registered during the early development of an animal, and this structure is determined by interactions between the neural control architecture, the body morphology, and the environmental context in which the animal develops. We present a minimal model of pseudo-physical interactions between an animat body and its environment, which includes each of these elements, and show how cortical map self-organisation is affected by manipulations to each element in turn. Initial simulation results suggest that maps robustly self-organise to reveal a homuncular organisation, where nearby body parts tend to be represented by adjacent neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miikkulainen, R., Bednar, J.A., Choe, Y., Sirosh, J.: Computational maps in the visual cortex. Springer, Berlin (2005)

    Google Scholar 

  2. Muller, M., Heidelberger, B., Teschner, M., Gross, M.: Meshless deformations based on shape matching. ACM Transactions on Graphics (TOG) 24(3) (2005)

    Google Scholar 

  3. Ritter, H., Martinez, T., Schulten, K.: Neural computation on self-organising maps: An introduction. Addison-Wesley, New York (1992)

    Google Scholar 

  4. Kohonen, T., Honkela, T.: Kohonen network. Scholarpedia 21(5), 1568 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Urashima, H., Wilson, S.P. (2014). A Self-organising Animat Body Map. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science(), vol 8608. Springer, Cham. https://doi.org/10.1007/978-3-319-09435-9_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09435-9_55

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09434-2

  • Online ISBN: 978-3-319-09435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics