Skip to main content

How Cockroaches Employ Wall-Following for Exploration

  • Conference paper
Biomimetic and Biohybrid Systems (Living Machines 2014)

Abstract

Animals such as cockroaches depend on exploration of unknown environments, and the complexity of their strategies may inspire robotic approaches. We have previously shown that cockroach behavior with respect to shelters and the walls of an otherwise empty arena can be captured with a stochastic state-based algorithm. We call this algorithm RAMBLER, Randomized Algorithm Mimicking Biased Lone Exploration in Roaches. In this work, we verified and extended this model by adding a barrier to our cockroach experiments. From these experiments, we have generalized RAMBLER to address an arbitrarily large maze. For biology, this is a model of the decision-making process in the cockroach brain. For robotics, this is a strategy that may improve exploration for goals in certain environments. Generally, the cockroach behavior seems to recommend variability in the absence of planning, and following paths defined by the walls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Azuma, S., Sakar, M.S., Pappas, G.J.: 49th IEEE Conference on Decision and Control, pp. 6337–6342 (2010)

    Google Scholar 

  2. Beer, R.D.: Adaptive Behavior 11, 209–243 (2003)

    Google Scholar 

  3. Bender, J.A., Simpson, E.M., Tietz, B.R., Daltorio, K.A., Quinn, R.D., Ritzmann, R.E.: Journal of Experimental Biology 214, 2057–2064 (2011)

    Google Scholar 

  4. Branson, K., et al.: Nature Methods 6, 451–457 (2009)

    Google Scholar 

  5. Camhi, J.M., Johnson, E.N.: Journal of Experimental Biology 202, 631–643 (1999)

    Google Scholar 

  6. Canonge, S., et al.: Journal of Insect Physiology 55, 976–982 (2009)

    Google Scholar 

  7. Choset, H., Hager, G.D., Dodds, Z.: Robotic motion planning: Bug algorithms. Lecture Notes, Carnegie Melon University, http://www.cs.cmu.edu/~motionplanning/lecture/Chap2-Bug-Alg_howie.pdf

  8. Daltorio, K.A., et al.: Proceedings of the 2010 IEEE/ION Position Location and Navigation Symposium (2010 ION/IEEE PLANS), Indian Wells, CA (2010)

    Google Scholar 

  9. Daltorio, K.A.: Ph.D. Thesis. Case Western Reserve University (2013)

    Google Scholar 

  10. Daltorio, K.A., et al.: Adaptive Behavior 21(5), 404–420 (2013)

    Google Scholar 

  11. Fox. Living Machines 2013, London, UK, pp. 108–118 (2013)

    Google Scholar 

  12. Harley, C.M., Ritzmann, R.E.: J. Exp. Bio. 213, 2851–2864 (2010)

    Google Scholar 

  13. Harley, C.M., English, B.A., Ritzmann, R.E.: J. Exp. Bio. 212(3) (2009)

    Google Scholar 

  14. Harvey, C.D., Coen, P., Tank, D.W.: Nature 484, 62–68 (2012)

    Google Scholar 

  15. Jeanson, R., et al.: Journal of Theoretical Biology 225, 443–451 (2003)

    Google Scholar 

  16. Lamperski, A.G., Loh, O.Y., Kutscher, B.L., Cowan, N.J.: IEEE ICRA 2005, pp. 3838–3843 (2005)

    Google Scholar 

  17. LaValle, S.M., Kuffner, J.J.: In: Donald, B.R., Lynch, K.M., Rus, D. (eds.) Algorithmic and Computational Robotics: New Directions, pp. 293–308. A K Peters, Wellesley (2001)

    Google Scholar 

  18. Lumelski, V.J., Stepanov, A.A.: IEEE Transactions on Automatic Control AC-31(1) (1986)

    Google Scholar 

  19. Ritzmann, R.E.: In: Beer, R., Ritzmann, R.E., Mckenna, T. (eds.) Biological Neural Networks in Invertebrate Neuroethology and Robotics, ch. VI. Academic Press (1993)

    Google Scholar 

  20. Ritzmann, R.E., et al.: Frontiers of Neurosciences 6(97) (2012)

    Google Scholar 

  21. Straw, A.D., Dickinson, M.H.: Source Code for Biology and Medicine 4(9) (2009)

    Google Scholar 

  22. Taylor, K., LaValle, S.M.: IEEE ICRA, pp. 3981–3986 (2009)

    Google Scholar 

  23. Tietz, B.R.: Masters Thesis. Case Western Reserve University (2012)

    Google Scholar 

  24. Webb, B.: Adaptive Behavior 17(4), 269–286 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Daltorio, K.A. et al. (2014). How Cockroaches Employ Wall-Following for Exploration. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2014. Lecture Notes in Computer Science(), vol 8608. Springer, Cham. https://doi.org/10.1007/978-3-319-09435-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09435-9_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09434-2

  • Online ISBN: 978-3-319-09435-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics