Skip to main content

An Iterated Local Search Platform for Transportation Logistics

  • Conference paper
  • First Online:
Information Sciences and Systems 2014

Abstract

Recent technological advances in optimization and transportation have enabled the development of efficient tools that support the decision-making process of logistic managers. The aim of this paper is to present a decision support system (DSS) that integrates an Iterated Local Search (ILS) for solving the Vehicle Routing Problem (VRP). Its clear design allows an efficient exploration of the solution by the decision-maker. The computational experiments show that the ILS is very competitive in comparison to state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T.J. Ai, V. Kachitvichyanukul, Particle swarm optimization and two solution representations for solving the capacitated vehicle routing problem. Comput. Ind. Eng. 56, 380–387 (2009)

    Article  Google Scholar 

  2. C. Alabas-Uslu, B. Dengiz, A self-adaptive local search algorithm for the classical vehicle routing problem. Expert Syst. Appl. 38, 8990–8998 (2011)

    Article  Google Scholar 

  3. S. Almoustafa, S. Hanafi, N. Mladenovic, New exact method for large asymmetric distance-constrained vehicle routing problem. Eur. J. Oper. Res. 226, 386–394 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. C. Archetti, N. Bianchessi, M.G. Speranza, Branch-and-cut algorithms for the split delivery vehicle routing problem. Eur. J. Oper. Res. 238, 685–698 (2014)

    Article  MathSciNet  Google Scholar 

  5. P. Augerat, Approche Polyhédrale du Problème de Tournées de Véhicules Ph.D. Dissertation, Institut Polytechnique de Grenoble (1995)

    Google Scholar 

  6. D. Cattaruzza, N. Absi, D. Feillet, T. Vidal, A memetic algorithm for the multi trip vehicle routing problem. Eur. J. Oper. Res. 236, 833–848 (2014)

    Article  MathSciNet  Google Scholar 

  7. S. Dahl, U. Derigs, Cooperative planning in express carrier networks? an empirical study on the effectiveness of a real-time decision support system. Decis. Support Syst. 51, 620–626 (2011)

    Article  Google Scholar 

  8. C. Erbao, L. Mingyong, Y. Hongming, Open vehicle routing problem with demand uncertainty and its robust strategies. Expert Syst. Appl. 41, 3569–3575 (2014)

    Article  Google Scholar 

  9. N. Ghaffari-Nasab, S.G. Ahari, M. Ghazanfari, A hybrid simulated annealing based heuristic for solving the location-routing problem with fuzzy demands. Sci. Iranica 20, 919–930 (2013)

    Google Scholar 

  10. A. Grosso, A. Jamali, M. Locatelli, Finding maximin latin hypercube designs by iterated local search heuristics. Eur. J. Oper. Res. 197, 541–547 (2009)

    Article  MATH  Google Scholar 

  11. J. Lenstra, A. Kan, Complexity of vehicle routing and scheduling problems. Networks 11, 221–227 (1981)

    Article  Google Scholar 

  12. H. Lourenço, O. Martin, T. Stutzle, Iterated local search, Handbook of Metaheuristics of International Series in Operations Research & Management Science (Kluwer Academic, Dordrecht, 2003), pp. 321–353

    Google Scholar 

  13. R. Manzini, A top-down approach and a decision support system for the design and management of logistic networks. Transp. Res. Part E 48, 1185–1204 (2012)

    Article  Google Scholar 

  14. Y. Marinakis, M. Marinaki, A bumble bees mating optimization algorithm for the open vehicle routing problem. Swarm Evol. Comput. 15, 80–94 (2014)

    Article  Google Scholar 

  15. Y. Marinakis, M. Marinaki, G. Dounias, A hybrid particle swarm optimization algorithm for the vehicle routing problem. Eng. Appl. Artif. Intell. 23, 463–472 (2010)

    Article  Google Scholar 

  16. J.E. Mendoza, A.L. Medaglia, N. Velasco, An evolutionary-based decision support system for vehicle routing: the case of a public utility. Decis. Support Syst. 46, 730–742 (2009)

    Article  Google Scholar 

  17. S. MirHassani, N. Abolghasemi, A particle swarm optimization algorithm for open vehicle routing problem. Expert Syst. Appl. 38, 11547–11551 (2011)

    Article  Google Scholar 

  18. P.C. Pop, O. Matei, C.P. Sitar, An improved hybrid algorithm for solving the generalized vehicle routing problem. Neurocomputing 109, 76–83 (2013)

    Article  Google Scholar 

  19. W. Szeto, Y. Wu, S.C. Ho, An artificial bee colony algorithm for the capacitated vehicle routing problem. Eur. J. Oper. Res. 215, 126–135 (2011)

    Article  Google Scholar 

  20. A.S. Tasan, M. Gen, A genetic algorithm based approach to vehicle routing problem with simultaneous pick-up and deliveries. Comput. Ind. Eng. 62, 755–761 (2012)

    Article  Google Scholar 

  21. W. Tu, Z. Fang, Q. Li, S.-L. Shaw, B. Chen, A bi-level voronoi diagram-based metaheuristic for a large-scale multi-depot vehicle routing problem. Transp. Res. Part E 61, 84–97 (2014)

    Article  Google Scholar 

  22. J. Wy, B.-I. Kim, A hybrid metaheuristic approach for the rollon-rolloff vehicle routing problem. Comput. Oper. Res. 40, 1947–1952 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takwa Tlili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Tlili, T., Krichen, S. (2014). An Iterated Local Search Platform for Transportation Logistics. In: Czachórski, T., Gelenbe, E., Lent, R. (eds) Information Sciences and Systems 2014. Springer, Cham. https://doi.org/10.1007/978-3-319-09465-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09465-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09464-9

  • Online ISBN: 978-3-319-09465-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics