Skip to main content

UMTS Base-Station Location Problem for Uplink Direction Using Genetic Algorithms and Fuzzy Logic

  • Conference paper
  • First Online:
Networked Systems (NETYS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 8593))

Included in the following conference series:

  • 758 Accesses

Abstract

In this paper, we address the problem of planning the universal mobile telecommunication system (UMTS) base stations location for uplink direction. The objective is to maximize the total trafic covered and minimize the total installation cost. To define the cost, researchers used the current period market prices. But prices may change over time. Our aim here is to deal with the imprecise and uncertain information of prices. For this we address this problem using fuzzy Logic. We propose an algorithm based on the hybridization of genetic algorithm (GA) with Local Search method (LS). To code the solutions of the problem, we have used an encoding method which combines binary and integer coding. To validate the proposed method some numerical examples are given. The obtained results show the efficiency of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amaldi, E., Capone, A., Malucelli, F.: Planning UMTS base station location: optimization models with power control and algorithms. IEEE Trans. Wirel. Commun. 2, 939–952 (2003)

    Article  Google Scholar 

  2. Berruto, E., Gudmundson, M., Menolascino, R., Mohr, W., Pizarroso, M.: Research activities on UMTS radio interface, network architectures, and planning. IEEE Commun. Mag. 36, 82–95 (1998)

    Article  Google Scholar 

  3. Naghshineh, M., Katzela, I.: Channel assignment schemes for cellular mobile telecommunication systems: a comprehensive survey. IEEE Pers. Commun. 3, 10–31 (1996)

    Article  Google Scholar 

  4. Amaldi, E., Capone, A., Malucelli, F., Signori, F.: Radio planning and optimization of W-CDMA systems. In: Conti, M., Giordano, S., Gregori, E., Olariu, S. (eds.) PWC 2003. LNCS, vol. 2775, pp. 437–447. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. St-Hilaire, M., Chamberland, S., Pierre, S.: Uplink UMTS network design-an integrated approach. Comput. Netw. 50, 2747–2761 (2006)

    Article  MATH  Google Scholar 

  6. Juttner, A., Orban, A., Fiala, Z.: Two new algorithms for UMTS access network topology design. Eur. J. Oper. Res. 164, 456–474 (2005)

    Article  Google Scholar 

  7. Hashemi, S.M., Moradi, A., Rezapour, M.: An ACO algorithm to design UMTS access network using divided and conquer technique. Eng. Appl. Artif. Intell. 21, 931–940 (2008)

    Article  Google Scholar 

  8. Meunier, H.: Algorithmes évolutionnaires parallèles pour l’optimisation multi objectif de réseaux de télécommunications mobiles. Ph.D. thesis, University of Sciences and Technologies, Lille (2002)

    Google Scholar 

  9. Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Métaheuristiques pour l’optimisation difficile. Eyrolles, Paris (2003)

    Google Scholar 

  10. Amaldi, E., Capone, A., Malucelli, F.: Radio planning and coverage optimization of 3G cellular networks. Wirel. Netw. 14, 435–447 (2008)

    Article  Google Scholar 

  11. Mundt, T.: How much is a byte? A survey of costs for mobile data transmission. In: 2004 Proceedings of the Winter International Symposium on Information and Communication Technologies (WISICT) (2004)

    Google Scholar 

  12. Yang, Y.: UMTS investment study. Technical report T-109.551. Helsinki University, Telecommunication Business II (2003)

    Google Scholar 

  13. Katagiri, H., Mermri, E.B., Sakawa, M., Kato, K., Nishizaki, I.: A possibilistic and stochastic programming approach to fuzzy random MST problem. IEICE Trans. Inf. Syst. E88–D(8), 1912–1919 (2005)

    Article  Google Scholar 

  14. Hata, M.: Empirical formula for propagation loss in land mobile radio services. IEEE Trans. Veh. Technol. VT–29, 317–325 (1980)

    Article  Google Scholar 

  15. Sakawa, M.: Fuzzy Sets and Interactive Multiobjective Optimization. Springer, New York (1993)

    Book  MATH  Google Scholar 

  16. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  17. Peng, P.K., Hitam, M.S.: Multiobjective optimization using fuzzy genetic algorithms. Empowering Science, Technology and Innovation Towards a Better Tomorrow, UMTAS (2011)

    Google Scholar 

  18. Kaur, A., Kaur, A.: Comparison of mamdani-type and sugeno-type fuzzy inference systems for air conditioning system. Int. J. Soft Comput. Eng. (IJSCE) 2(2), 2231–2307 (2012)

    Google Scholar 

  19. Moscato, P.: On Evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech Concurrent Computation Program (report 826) (1989)

    Google Scholar 

  20. Molina, D., Lozano, M., Garcia-Martinez, C., Herrera, F.: Memetic algorithms for continuous optimisation based on local search chains. Evol. Comput. 18(1), 27–63 (2010)

    Article  Google Scholar 

  21. Mandal, A., Das, A.K., Mukherjee, P., Das, S.: Modified differential evolution with local search algorithm for real world optimization. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1565–1572 (2011)

    Google Scholar 

  22. Gabli, M., Jaara, E.M., Mermri, E.B.: Planning UMTS base station location using genetic algorithm with a dynamic trade-off parameter. In: Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 120–134. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Bontoux, B.: Techniques hybrides de recherche exacte et approche: application des problèmes de transport. Ph.D. thesis, University of Avignon and the Vaucluse (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Gabli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gabli, M., Jaara, E.M., Mermri, E.B. (2014). UMTS Base-Station Location Problem for Uplink Direction Using Genetic Algorithms and Fuzzy Logic. In: Noubir, G., Raynal, M. (eds) Networked Systems. NETYS 2014. Lecture Notes in Computer Science(), vol 8593. Springer, Cham. https://doi.org/10.1007/978-3-319-09581-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09581-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09580-6

  • Online ISBN: 978-3-319-09581-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics