Skip to main content

Oblivious Rendezvous in Cognitive Radio Networks

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8576))

  • 706 Accesses

Abstract

Rendezvous is a fundamental process in the operation of a Cognitive Radio Network (CRN), through which a secondary user can establish a link to communicate with its neighbors on the same frequency band (channel). The licensed spectrum is divided into N non-overlapping channels, and most previous works assume all users have the same label for the same channel. This implies some degree of centralized coordination which might be impractical in distributed systems such as a CRN. Thus we propose Oblivious Rendezvous where the users may have different labels for the same frequency band.

In this paper, we study the oblivious rendezvous problem for M users (ORP-M for short) in a multihop network with diameter D. We first focus on the rendezvous process between two users (ORP-2) and then extend the derived algorithms to ORP-M. Specifically, we give an Ω(N 2) lower bound for ORP-2, and propose two deterministic distributed algorithms solving ORP-2. The first one is the ID Hopping (IDH) algorithm which generates a fixed length sequence and guarantees rendezvous in O(N max {N,M}) time slots; it meets the lower bound when M = O(N). The second one is the Multi-Step Hopping (MSH) algorithm which guarantees rendezvous in O(N 2 log N M) time slots by combing ID scaling and hopping with different steps; it meets the lower bound if M can be bounded by a polynomial function of N, which is true of large scale networks. The two algorithms are also applicable to non-oblivious rendezvous and the performance is comparable to the state-of-the-art results. Then we extend the algorithms to ORP-M with bounded rendezvous time by increasing the diameter D by a factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akyildiz, I., Lee, W., Vuran, M., Mohanty, S.: NeXt Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks: A Survey. Computer Networks 50(13), 2127–2159 (2006)

    Article  MATH  Google Scholar 

  2. Alpern, S., Pikounis, M.: The Telephone Coordination Game. Game Theory Appl. 5, 1–10 (2000)

    MathSciNet  Google Scholar 

  3. Anderson, E.J., Weber, R.R.: The Rendezvous Problem on Discrete locations. Journal of Applied Probability 28, 839–851 (1990)

    Article  MathSciNet  Google Scholar 

  4. Bian, K., Park, J.-M., Chen, R.: A Quorum-Based Framework for Establishing Control Channels in Dynamic Spectrum Access Networks. In: Mobicom (2009)

    Google Scholar 

  5. Bian, K., Park, J.-M.: Asynchronous Channel Hopping for Establishing Rendezvous in Cognitive Radio Networks. In: IEEE INFOCOM (2011)

    Google Scholar 

  6. Bian, K., Park, J.-M.: Maximizing Rendezvous Diversity in Rendezvous Protocols for Decentralized Cognitive Radio Networks. IEEE Transactions on Mobile Computing 12(7), 1294–1307 (2013)

    Article  Google Scholar 

  7. Cai, Z., Ji, S., He, J., Bourgeois, A.G.: Optimal Distributed Data Collection for Asynchronous Cognitive Radio Networks. In: ICDCS (2012)

    Google Scholar 

  8. Chen, S., Russell, A., Samanta, A., Sundaram, R.: Deterministic Blind Rendezvous in Cognitive Radio Networks. In: ICDCS (2014)

    Google Scholar 

  9. Chuang, I., Wu, H.-Y., Lee, K.-R., Kuo, Y.-H.: Alternate Hop-and-Wait Channel Rendezvous Method for Cognitive Radio Networks. In: INFOCOM (2013)

    Google Scholar 

  10. Dai, Y., Wu, J., Xin, C.: Virtual Backbone Construction for Cognitive Radio Networks without Common Control Channel. In: INFOCOM (2013)

    Google Scholar 

  11. DaSilva, L., Guerreiro, I.: Sequence-Based Rendezvous for Dynamic Spectrum Access. In: DySPAN (2008)

    Google Scholar 

  12. Gu, Z., Hua, Q.-S., Wang, Y., Lau, F.C.M.: Nearly Optimal Asynchronous Blind Rendezvous Algorithm for Cognitive Radio Networks. In: SECON (2013)

    Google Scholar 

  13. Gu, Z., Hua, Q.-S., Dai, W.: Local Sequence Based Rendezvous Algorithms for Cognitive Radio Networks. In: SECON (2014)

    Google Scholar 

  14. Gu, Z., Hua, Q.-S., Wang, Y., Lau, F.C.M.: Oblivious Rendezvous in Cognitive Radio Networks, http://i.cs.hku.hk/~qshua/sirocco2014full.pdf

  15. Huang, X., Lu, D., Li, P., Fang, Y.: Coolest Path: Spectrum Mobility Aware Routing Metrics in Cognitive Ad Hoc Networks. In: ICDCS (2011)

    Google Scholar 

  16. Ji, S., Beyah, R., Cai, Z.: Minimum-Latency Broadcast Scheduling for Cognitive Radio Networks. In: SECON (2013)

    Google Scholar 

  17. Jia, J., Zhang, Q., Shen, X.: HC-MAC: A Hardware-Constrained Cognitive MAC for Efficient Spectrum Management. IEEE Journal on Selected Areas in Communications 26(1), 106–117 (2008)

    Article  Google Scholar 

  18. Kondareddy, Y., Agrawal, P., Sivalingam, K.: Cognitive Radio Network Setup without a Common Control Channel. In: MILCOM (2008)

    Google Scholar 

  19. Lazos, L., Liu, S., Krunz, M.: Spectrum Opportunity-Based Control Channel Assignment in Cognitive Radio Networks. In: SECON (2009)

    Google Scholar 

  20. Lin, Z., Liu, H., Chu, X., Leung, Y.-W.: Enhanced Jump-Stay Rendezvous Algorithm for Cognitive Radio Networks. IEEE Communications Letters 17(9), 1742–1745 (2013)

    Article  Google Scholar 

  21. Liu, H., Lin, Z., Chu, X., Leung, Y.-W.: Jump-Stay Rendezvous Algorithm for Cognitive Radio Networks. IEEE Transactions on Parallel and Distributed Systems 23(10), 1867–1881 (2012)

    Article  Google Scholar 

  22. Perez-Romero, J., Salient, O., Agusti, R., Giupponi, L.: A Novel On-Demand Cognitive Pilot Channel enabling Dynamic Spectrum Allocation. In: DySPAN (2007)

    Google Scholar 

  23. Shin, J., Yang, D., Kim, C.: A Channel Rendezvous Scheme for Cognitive Radio Networks. IEEE Communications Letters 14(10), 954–956 (2010)

    Article  Google Scholar 

  24. Stevenson, C.R., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S.J., Caldwell, W.: IEEE 802.22: The First Cognitive Radio Wireless Regional Area Network Standard. IEEE Communications Magazine 47(1), 130–138 (2009)

    Article  Google Scholar 

  25. Song, J., Xie, J., Wang, X.: A Novel unified Analytical Model for Broadcast Protocols in Multihop Cognitive Radio Ad Hoc Networks. IEEE Transaction on Mobile Computing (2013)

    Google Scholar 

  26. Theis, N.C., Thomas, R.W., DaSilva, L.A.: Rendezvous for Cognitive Radios. IEEE Transactions on Mobile Computing 10(2), 216–227 (2011)

    Article  Google Scholar 

  27. Zhang, D., He, T., Ye, F., Ganti, R., Lei, H.: EQS: Neighbor Discovery and Rendezvous Maintenance with Extended Quorum System for Mobile Sensing Applications. In: ICDCS (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gu, Z., Hua, QS., Wang, Y., Lau, F.C.M. (2014). Oblivious Rendezvous in Cognitive Radio Networks. In: Halldórsson, M.M. (eds) Structural Information and Communication Complexity. SIROCCO 2014. Lecture Notes in Computer Science, vol 8576. Springer, Cham. https://doi.org/10.1007/978-3-319-09620-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09620-9_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09619-3

  • Online ISBN: 978-3-319-09620-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics