Skip to main content

How Many Ants Does It Take to Find the Food?

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8576))

Abstract

Consider the Ants Nearby Treasure Search (ANTS) problem, where n mobile agents, initially placed at the origin of an infinite grid, collaboratively search for an adversarially hidden treasure. The agents are controlled by deterministic/randomized finite or pushdown automata and are able to communicate with each other through constant-size messages. We show that the minimum number of agents required to solve the ANTS problem crucially depends on the computational capabilities of the agents as well as the timing parameters of the execution environment. We give lower and upper bounds for different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Emek, Y., Langner, T., Uitto, J., Wattenhofer, R.: Solving the ANTS Problem with Asynchronous Finite State Machines. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 471–482. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative Search on the Plane Without Communication. In: Proceedings of the 31st ACM Symposium on Principles of Distributed Computing (PODC), pp. 77–86 (2012)

    Google Scholar 

  3. Feinerman, O., Korman, A.: Memory Lower Bounds for Randomized Collaborative Search and Implications for Biology. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 61–75. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph Exploration by a Finite Automaton. Theoretical Computer Science 345(2-3), 331–344 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between Selection Complexity and Performance when Searching the Plane without Communication. In: Proceedings of the 33rd Symposium on Principles of Distributed Computing, PODC (to appear, 2014)

    Google Scholar 

  6. Albers, S., Henzinger, M.: Exploring Unknown Environments. SIAM Journal on Computing 29, 1164–1188 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Deng, X., Papadimitriou, C.: Exploring an Unknown Graph. Journal of Graph Theory 32, 265–297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree Exploration with Little Memory. Journal of Algorithms 51, 38–63 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Panaite, P., Pelc, A.: Exploring Unknown Undirected Graphs. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 316–322 (1998)

    Google Scholar 

  10. Reingold, O.: Undirected Connectivity in Log-Space. Journal of the ACM (JACM) 55, 17:1–17:24 (2008)

    Google Scholar 

  11. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random Walks, Universal Traversal Sequences, and the Complexity of Maze Problems. In: Proceedings of the 20th Annual Symposium on Foundations of Computer Science (SFCS), pp. 218–223 (1979)

    Google Scholar 

  12. Aigner, M., Fromme, M.: A Game of Cops and Robbers. Discrete Applied Mathematics 8, 1–12 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the Plane. Information and Computation 106, 234–252 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. López-Ortiz, A., Sweet, G.: Parallel Searching on a Lattice. In: Proceedings of the 13th Canadian Conference on Computational Geometry (CCCG), pp. 125–128 (2001)

    Google Scholar 

  15. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in Networks of Passively Mobile Finite-State Sensors. Distributed Computing, 235–253 (2006)

    Google Scholar 

  16. Aspnes, J., Ruppert, E.: An Introduction to Population Protocols. In: Garbinato, B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile Applications, pp. 97–120. Springer (2009)

    Google Scholar 

  17. Emek, Y., Wattenhofer, R.: Stone Age Distributed Computing. In: Proceedings of the 32nd ACM Symposium on Principles of Distributed Computing (PODC) (2013)

    Google Scholar 

  18. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Emek, Y., Langner, T., Stolz, D., Uitto, J., Wattenhofer, R. (2014). How Many Ants Does It Take to Find the Food?. In: Halldórsson, M.M. (eds) Structural Information and Communication Complexity. SIROCCO 2014. Lecture Notes in Computer Science, vol 8576. Springer, Cham. https://doi.org/10.1007/978-3-319-09620-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09620-9_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09619-3

  • Online ISBN: 978-3-319-09620-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics