Abstract
The computation width (a.k.a. tree width, a.k.a. leaf size) of a nondeterministic finite automaton (NFA) A counts the number of branches in the computation tree of A on a given input. The deviation number of A on a given input counts the number of nondeterministic paths that branch out from the best accepting computation. Deviation number is a best-case nondeterminism measure closely related to the guessing measure of Goldstine, Kintala and Wotschke (Infrom. Comput. 86, 1990, 179–194). We consider the descriptional complexity of NFAs with similar given deviation number and with computation width.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Birget, J.C.: Intersection and union of regular languages and state complexity. Inform. Process. Lett. 43, 85–90 (1992)
Björklund, H., Martens, W.: The tractability frontier for NFA minimization. J. Comput. System Sci. 78, 198–210 (2012)
Gill, A., Kou, L.T.: Multiple-entry finite automata. J. Comput. System. Sci. 9, 1–19 (1974)
Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.: Descriptional complexity of machines with limited resources. J. Univ. Comput. Sci. 8, 193–234 (2002)
Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in regular languages. Inform. Comput. 86, 179–194 (1990)
Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic finite automata. J. Automata, Languages, and Combinatorics 6, 453–466 (2001)
Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communication complexity method for measuring nondeterminism in finite automata. Inform. Comput. 172, 202–217 (2002)
Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal languages. Bulletin of the EATCS 111, 70–86 (2013)
Leung, H.: On finite automata with limited nondeterminism. Acta Inf. 35, 595–624 (1998)
Leung, H.: Separating exponentially ambiguous finite automata from polynomially ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)
Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity of finite tree width NFAs. Journal of Automata, Languages and Combinatorics 17(2–4), 245–264 (2012)
Palioudakis, A., Salomaa, K., Akl, S.G.: Comparisons between measures of nondeterminism on finite automata. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 217–228. Springer, Heidelberg (2013)
Palioudakis, A., Salomaa, K., Akl, S.G.: Lower bound for converting an NFA with finite nondeterminism in an MDFA. J. Automata, Languages, and Combinatorics (accepted for publication March 2014)
Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press (2009)
Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. I, pp. 41–110. Springer (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Goč, D., Salomaa, K. (2014). Computation Width and Deviation Number. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds) Descriptional Complexity of Formal Systems. DCFS 2014. Lecture Notes in Computer Science, vol 8614. Springer, Cham. https://doi.org/10.1007/978-3-319-09704-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-09704-6_14
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09703-9
Online ISBN: 978-3-319-09704-6
eBook Packages: Computer ScienceComputer Science (R0)