Abstract
We extend the # operator in a natural way and derive a new type of counting complexity. While #\(\mathcal C\) classes (where \(\mathcal C\) is some circuit-based class like NC 1) only count proofs for acceptance of some input in circuits, one can also count proofs for rejection. The here proposed Zap-\(\mathcal C\) complexity classes implement this idea. We show that Zap-\(\mathcal C\) lies between #\(\mathcal C\) and Gap-\(\mathcal C\). In particular we consider Zap-NC 1 and polynomial size branching programs of bounded and unbounded width. We find connections to planar branching programs since the duality of positive and negative proofs can be found again in the duality of graphs and their co-graphs. This links to possible applications of our contribution, like closure properties of complexity classes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajek, J. (ed.) In Complexity of Computations and Proofs. Quaderni di Matematica (2004)
Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)
Beigel, R.: The polynomial method in circuit complexity. In: Structure in Complexity Theory Conference, pp. 82–95. IEEE Computer Society (1993)
Barrington, D.A.M., Lu, C.-J., Miltersen, P.B., Skyum, S.: Searching constant width mazes captures the AC0 hierarchy. In: Meinel, C., Morvan, M., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 73–83. Springer, Heidelberg (1998)
Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 computation. J. Comput. Syst. Sci. 57(2), 200–212 (1998)
Dorzweiler, O.: Zap-Klassen für Schaltkreise und Branching Programs. Masterarbeit, Universität Tübingen (2013)
Fenner, S.A., Fortnow, L., Kurtz, S.A.: Gap-definable counting classes. J. Comput. Syst. Sci. 48(1), 116–148 (1994)
Flamm, T.: Zap-C Schaltkreise. Diplomarbeit, Universität Tübingen (2012)
Hansen, K.A.: Constant width planar branching programs characterize ACC0 in quasipolynomial size. In: IEEE Conference on Computational Complexity, pp. 92–99. IEEE Computer Society (2008)
Jung, H.: Depth efficient transformations of arithmetic into boolean circuits. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 167–174. Springer, Heidelberg (1985)
Lange, K.-J.: Unambiguity of circuits. Theor. Comput. Sci. 107(1), 77–94 (1993)
Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
Reinhardt, K., Allender, E.: Making nondeterminism unambiguous. In: FOCS, pp. 244–253. IEEE Computer Society (1997)
Razborov, A.A.: Lower bounds for deterministic and nondeterministic branching programs. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp. 47–60. Springer, Heidelberg (1991)
Venkateswaran, H.: Circuit definitions of nondeterministic complexity classes. SIAM J. Comput. 21(4), 655–670 (1992)
Vollmer, H.: Introduction to circuit complexity - a uniform approach. Texts in theoretical computer science. Springer (1999)
Venkateswaran, H., Tompa, M.: A new pebble game that characterizes parallel complexity classes. SIAM J. Comput. 18(3), 533–549 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Dorzweiler, O., Flamm, T., Krebs, A., Ludwig, M. (2014). Positive and Negative Proofs for Circuits and Branching Programs. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds) Descriptional Complexity of Formal Systems. DCFS 2014. Lecture Notes in Computer Science, vol 8614. Springer, Cham. https://doi.org/10.1007/978-3-319-09704-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-09704-6_24
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09703-9
Online ISBN: 978-3-319-09704-6
eBook Packages: Computer ScienceComputer Science (R0)