Abstract
There is a lot of recent work aimed at improving the effectiveness in Information Retrieval results based on temporal information extracted from texts. Some works use all dates but others use only document creation or modification timestamps. However, no previous work explicitly focuses on the use of dates within in the document content to establish temporal relationships between words in the document. This work estimates these relationships through a temporal segmentation of the texts, exploring them to expand queries. It was achieved very promising results (13% improvement in Precision@15), especially for temporal aware queries. To the best of our knowledge, this is the first work using temporal text segmentation to improve retrieval results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alonso, O., Baeza-Yates, R., Gertz, M.: Effectiveness of temporal snippets. In: Workshop on Web Search Result Summarization and Presentation WWW 2009, Madrid, Spain (2009)
Alonso, O., Strötgen, J., Baeza-Yates, R., Gertz, M.: Temporal Information Retrieval: Challenges and Opportunities. In: TWAW 2011, pp. 1–8 (2011)
Amati, G.: Probability Models for Information Retrieval based on Divergence from Randomness. Ph.D. thesis. University of Glasgow (2003)
Amodeo, G., Amati, G., Gambosi, G.: On relevance, time and query expansion. In: CIKM 2011, pp. 1973–1976. ACM, New York (2011)
Baeza-Yates, R.: Searching the future. In: SIGIR Workshop MF/IR (2005)
Bramsen, P., Deshpande, P., Lee, Y.K., Barzilay, R.: Finding temporal order in discharge summaries. In: AMIA 2006: Proceedings of the American Medical Informatics Association Annual Symposium, Washington DC, USA, pp. 81–85 (2006)
Caillet, M., Pessiot, J.F., Amini, M.R., Gallinari, P.: Unsupervised learning with term clustering for thematic segmentation of texts. In: Fluhr, C., Grefenstette, G., Croft, W.B. (eds.) RIAO, pp. 648–657. CID (2004)
Cho, J., Garcia-Molina, H.: Synchronizing a database to improve freshness. SIGMOD Rec. 29(2), 117–128 (2000)
Craveiro, O., Macedo, J., Madeira, H.: It is the time for portuguese texts! In: Caseli, H., Villavicencio, A., Teixeira, A., Perdigão, F. (eds.) PROPOR 2012. LNCS (LNAI), vol. 7243, pp. 106–112. Springer, Heidelberg (2012)
Kalczynski, P.J., Chou, A.: Temporal document retrieval model for business news archives. Information Processing and Management 41(3), 635–650 (2005)
Kleinberg, J.: Temporal dynamics of on-line information streams. In: Garofalakis, M., Gehrke, J., Rastogi, R. (eds.) Data Stream Management: Processing High-Speed Data Streams. Springer (2006)
Lavrenko, V., Croft, W.B.: Relevance based language models. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2001, pp. 120–127. ACM, New York (2001)
Nunes, S., Ribeiro, C., David, G.: Use of temporal expressions in web search. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 580–584. Springer, Heidelberg (2008)
Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A High Performance and Scalable Information Retrieval Platform. In: Proceedings of ACM SIGIR 2006 Workshop on Open Source Information Retrieval (OSIR 2006), Seattle, Washington (2006)
Santos, D., Rocha, P.: Chave: Topics and questions on the portuguese participation in clef. In: Peters, C., Borri, F. (eds.) Cross Language Evaluation Forum: Working Notes for the CLEF 2004 Workshop (CLEF 2004), Pisa, Italy, September 15-17, pp. 639–648. IST-CNR (2004), (revised as Santos & Rocha, 2005)
Whiting, S., Moshfeghi, Y., Jose, J.M.: Exploring term temporality for pseudo-relevance feedback. In: SIGIR 2011, pp. 1245–1246. ACM, New York (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Craveiro, O., Macedo, J., Madeira, H. (2014). Words Temporality for Improving Query Expansion. In: Baptista, J., Mamede, N., Candeias, S., Paraboni, I., Pardo, T.A.S., Volpe Nunes, M.d.G. (eds) Computational Processing of the Portuguese Language. PROPOR 2014. Lecture Notes in Computer Science(), vol 8775. Springer, Cham. https://doi.org/10.1007/978-3-319-09761-9_30
Download citation
DOI: https://doi.org/10.1007/978-3-319-09761-9_30
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-09760-2
Online ISBN: 978-3-319-09761-9
eBook Packages: Computer ScienceComputer Science (R0)