
A Behavioral Hierarchy of Strategy Logic*

Fabio Mogavero, Aniello Murano, Luigi Sauro

Università degli Studi di Napoli Federico II

Abstract. Starting from the seminal work introducing Alternating Tem-
poral Logic, formalisms for strategic reasoning have assumed a prominent
role in multi-agent systems verification. Among the others, Strategy Logic
(SL) allows to represent sophisticated solution concepts, by treating agent
strategies as first-order objects.
A drawback from the high power of SL is to admit non-behavioral strate-
gies: a choice of an agent, at a given point of a play, may depend on
choices other agents can make in the future or in counterfactual plays.
As the latter moves are unpredictable, such strategies cannot be easily
implemented, making the use of the logic problematic in practice.
In this paper, we describe a hierarchy of SL fragments as syntactic re-
strictions of the recently defined Boolean-Goal Strategy Logic (SL[bg]).
Specifically, we introduce Alternating-Goal Strategy Logic (SL[ag]) that,
by imposing a suitable alternation over the nesting of the Boolean connec-
tives in SL[bg], induces two dual chains of sets of formulas, the conjunctive
and disjunctive ones. A formula belongs to the level i of the conjunctive
chain if it just contains conjunctions of atomic goals together with a
unique formula belonging to the disjunctive chain of level i − 1. The
disjunctive chain is defined similarly. We formally prove that classic and
behavioral semantics for SL[ag] coincide. Additionally, we study the
related model-checking problem showing that it is 2ExpTime-complete.

1 Introduction

In the multi-agent system domain, formalisms for strategic reasoning have assumed
a prominent role in the specification, verification, and synthesis tasks [3,12–17,27,
29, 31]. A story of success in this field is Alternating Temporal Logic (ATL?, for
short), introduced by Alur, Henzinger, and Kupferman [3]. Such a logic has the
ability to express cooperation and competition among teams of agents in order
to achieve robust temporal requirements, such as fairness, liveness, etc. This is
made possible thanks to the fact that ATL? formally comes as a generalization
of the well known branching-time temporal logic CTL? [8], where the existential
and universal path quantifiers E and A are replaced with strategic modalities of
the form 〈〈A〉〉 and [[A]], for a generic set A of agents. The simplicity of these
modalities results in a “friendly-use” logic with an elementary complexity for

* Partially supported by the FP7 European Union project 600958-SHERPA, the
Embedded System Cup Project B25B09090100007 (POR Campania FS 2007/2013,
asse IV e asse V), and the OR.C.HE.S.T.R.A. MIUR PON project.



the main related decision procedures. Indeed, both the model-checking and the
satisfiability problems are 2ExpTime-complete [3, 28]. On the other hand, the
use of strategic modalities in ATL? is restricted in such a way that the internal
quantifications are just coupled in the strict ∃∀ and ∀∃ alternation. Moreover,
and more important, agent strategies are only treated implicitly through these
modalities, so they cannot be explicitly associated with any particular agent nor
used by the same agent in different contexts. All these aspects give to ATL? a
number of limitations when one tries to apply it to multi-agent system reasoning
and games [1, 9, 11,20,30].

To overcome these difficulties and, thus, be able to describe sophisticated
interactions among agent behaviors, new and more powerful logics have been
recently introduced [4, 6, 7, 18, 24, 32]. Among the others, Strategy Logic (SL), as
it has been introduced in [23], allows to formalize important solution concepts by
treating agent strategies as first-order objects. Intuitively, SL unpacks the ATL?

modalities, allowing to explicitly declare the strategy profiles. Notably, strategies
in SL represent general conditional plans that at each step prescribe an action on
the base of the previous history. Then, by means of a binding operator, they can
be liked to specific agents. This allows to reuse strategies or share them among
different agents. With more details, SL makes use of the existential 〈〈x〉〉 and the
universal [[x]] strategic quantifications, which stand for “there exists a strategy x”
and “for all strategies x”, respectively. Furthermore, it uses the binding operator
(a, x) that allows to bind an agent a to the strategy associated with a variable x.
Using these operators, key game-theoretic properties such as Nash equilibria and
sub-game perfect equilibria, not expressible in ATL?, can be described in SL.

Apart from the expressive gain of SL with respect to ATL?, the finer-grained
exploitation of agent strategies let to study and reveal intrinsic game-theoretic
properties of the logics for strategic reasonings, never grasped before. The most
important one is that SL allows to specify sentences that can be satisfied only by
agent strategies that are not behavioral [19,21]. More specifically, in a determined
history of a play, the value of a strategy may depend on what the other strategies
will prescribe in the future or in other counterfactual plays. This means that,
to choose an existential strategy, we need to know the entire structure of all
universal strategies previously quantified. But this is in general unpredictable, as
what we actually know is their value on the history of interest only. Clearly, using
logics that admit non-behavioral strategies makes problematic their adoption in
practical applications. Additionally, by allowing in SL such complicated strategies,
we lose important model-theoretic properties and incur an increased complexity
of related decision problems [19].

The quest for a behavioral semantics of SL has led to the definition of a settled
family of syntactic restrictions [19]. Among the others, Boolean-Goal Strategy
Logic (SL[bg], for short) encompasses sentences in a special prenex normal form
having only a Boolean combination of temporal goals to handle at a time. For
a goal, it is formally meant an SL formula of the form [ψ, where [ is a binding
prefix of the type (a, x), . . . , (an, xn) containing all the involved agents and ψ
is a linear-time temporal logic formula, possibly expressed in LTL [26]. It has



been shown that SL[bg] admits non-behavioral strategies and, to avoid this, it
is enough to limit the Boolean combination of goals just to a conjunction or
a disjunction of them [21]. The corresponding logics, named Conjunctive-Goal
Strategy Logic (SL[cg], for short) and Disjunctive-Goal Strategy Logic (SL[dg],
for short), respectively, are the maximal syntactic fragment of SL known so
far to admit a behavioral semantics and with a model-checking problem to be
2ExpTime-complete, as for ATL?. On the other hand, it is worth recalling
that the exact complexity of the model-checking problem for SL[bg] is an open
question and the best existing algorithm requires non-elementary time.

The positive results regarding SL[cg] and SL[dg] have left us with a conjecture
in [21] that dealing with a fragment holding a behavioral semantics is a sufficient
condition to ensure an elementary procedure for the related model-checking
problem. This has stimulated us to introduce and study in this paper a whole
hierarchy of syntactic behavioral fragments of SL[bg] and effectively show that
the model-checking problem is elementary decidable. Precisely, we introduce
Alternating-Goal Strategy Logic (SL[ag], for short) that, by imposing an opportune
alternation over the nesting of Boolean connectives in SL[bg], induces two dual
chains of behavioral classes of sentences, called conjunctive-chain and disjunctive-
chain, of which SL[cg] and SL[dg] are just the base case. Analogously to the
definition of classic dual hierarchies, each level i in a given chain is built recursively
by making use of formulas at level i − 1 of the other one. With more details,
a matrix of a given level in these two chains has as form either φ ∧

∧
i [iψi or

φ ∨
∨
i [iψi, where φ belongs to the level i− 1 of the dual chain. We grant the

usefulness of SL[ag] by providing along the paper an example that requires a
sentence belonging to the second level.

To give an idea of the shape that the internal matrix of an SL[ag] sentence
can have, consider its parsing-tree along the Boolean connectives over goals. Such
a tree has the property that, for each node, its labeling and the one of all its
children but one coincide. This means that there is at most one path in the
parsing-tree having an alternating interleaving of ∨ and ∧ (this also provides
an explanation for the name of the logic). Clearly, if such a path starts with ∧,
then the formula belongs to the conjunctive chain; otherwise, it belongs to the
disjunctive one. Also, the length of the path determines the alternation level
k of the class. Finally, observe that having in the parse-tree more than one
node labeled differently from its father may already induce a sentence with a
non-behavioral semantics [19,21].

As a main result in this paper, we formally prove that classic and behavioral
semantics for SL[ag] coincide. Additionally, we study the related model-checking
problem showing that it is 2ExpTime-complete, thus not harder than that for
ATL?. The latter result also keeps alive the conjecture mentioned above.

From a technical point of view, the specific restrictions imposed to SL[ag]

formulas allow to simplify the reasoning about strategies by reducing this to
a step-by-step analysis about which action to perform in each moment. With
this observation in mind, we reduce the the satisfiability checking of a generic
SL[ag] sentence over a given structure to that for a suitably One-Goal Strategy



Logic (SL[1g], for short) sentence over an ad hoc built structure. SL[1g] is, as
expected from the name, a logic in which no Boolean combinations among goals
are allowed [19]. This logic has the benefit of sharing with ATL? several positive
structural properties, as well as, it results to be the maximal fragment of SL
known so far to have a decidable satisfiability problem.

Due to space limit, most of the concepts related to SL and proofs are sketched.
We refer to [19,20,23] for more material, motivations, and examples. Also, for
recent works in strategic reasoning, one can see [1, 2, 4, 5, 7, 9, 25,32].

2 Strategy Logic

In this section we introduce Strategy Logic [23]. Along the paper we use basic
notation that, being standard, we omit and refer to [19] for a formal definition.

2.1 Game Structure

We start formalizing the game-theoretic framework on which the proposed strate-
gic reasoning is performed. First, we introduce multi-agent concurrent arenas
that, roughly speaking, describe the game board and its moves, i.e., the physical
world where agents act. Formally, an arena is defined as follows.

Definition 1. Arena. - A multi-agent concurrent arena is a tuple A , 〈Ag,
Ac,St, tr〉, where Ag is the finite set of agents, a.k.a. players, Ac is the set
of actions, a.k.a. moves, St is the non-empty sets of states, a.k.a. positions.
Assume Dc,Ag⇀Ac to be the set of decisions, i.e., partial functions describing
the choices of an action by some agent. Then, tr : Dc → (St ⇀ St) denotes
the transition function mapping every decision δ ∈ Dc to a partial function
tr(δ) ⊆ St×St representing a deterministic graph over the states.

Informally, an arena can be seen as a generic labeled transition graph, where
labels are agent decisions. However, in this work some conditions rule out how
the transition function maps partial decisions to transitions. We preliminary
introduce the set of decisions that trigger some transition in a given state s ∈ St:

dc(s) , {δ ∈ Dc : s ∈ dom(tr(δ))};

As first property, we require is absence of end-states, i.e., dc(s) 6= ∅, for all s ∈ St.
Then, we need to provide a meaning to incomplete decisions. Roughly speaking,
agents not mentioned in a decision are non influential, that is (s1, s2) ∈ tr(δ)
means that, in case the agents in dom(δ) act as prescribed, the system goes
from s1 to s2, no matter what the other agents do. This requires the following
condition to be satisfied: for all s ∈ St and δ1, δ2 ∈ dc(s), there exists an agent
a ∈ dom(δ1) ∩ dom(δ2) such that δ1(a) 6= δ2(a). Finally, we assume that, each
active agent in in a state s ∈ St is associated with a finite non-empty set of
actions and all possible deriving combinations trigger some transition. First, the
set of active agents in s and the relative associated actions are defined as follows:

ag(s) , {a ∈ Ag : ∃δ ∈ dc(s) . a ∈ dom(δ)},



ac(s, a) , {δ(a) ∈ Ac : δ ∈ dc(s) ∧ a ∈ dom(δ)}.

Then, for all states s and decisions δ, if δ(a) ∈ ac(s, a), for all a ∈ ag(s), we have
that there is a decision δ′ ∈ dc(s) such that δ′ ⊆ δ (equivalently, δ�dom(δ′) = δ′).

An arena A naturally induces a graph G(A),〈St,Ed 〉, where the edge relation
Ed,

⋃
δ∈Dc tr(δ) is obtained by rubbing out all labels on the transitions. A path

π ∈ Pth in A is simply a path in G(A). Similarly, the order |A| , |G(A)| (resp.,
size ‖A‖ , ‖G(A)‖) of A is the order (resp., size) of its induced graph. Finite
paths also describe the possible evolutions of a play up to a certain point. For
this reason, they are also called in the game-theoretic jargon histories and the
corresponding set is denoted by Hst,{ρ∈Pth : |ρ|<ω}.

A strategy is a function σ∈Str,Hst→Ac prescribing which action has to
be performed given a certain history. Roughly speaking, a strategy is a generic
conditional plan which specifies “what to do” but not “who will do it”. We say
that a strategy σ is coherent w.r.t. an agent a (a-coherent) if in each possible
evolution of the game either a is not influential or the action that σ prescribes
is available to a. Formally, for each history ρ = s0 · · · sn, either a 6∈ ag(sn) or
σ(ρ) ∈ ac(sn, a). A (strategy) profile ξ∈Prf,Ag→Str specifies for each agent a
coherent strategy. Given a profile ξ and an agent a, ξ(a)(ρ) determines which
action an agent a has chosen to perform on a history ρ. To identify, instead, the
whole decision on ρ, we apply the flipping function ξ̂ : Hst→Dc.

A path π is coherent w.r.t. a profile ξ (ξ-coherent, for short) iff, for all

i ∈ [1, |π|[, there exists a decision δ ∈ dc(πi−1) such that δ ⊆ ξ̂(π<i) (equivalently,

ξ̂(π<i)�dom(δ) = δ) and πi = tr(δ)(πi−1), i.e., πi is the successor of πi−1 produced

by the agent decision ξ̂(π<i) prescribed by the profile ξ on the history π<i. In case
π is infinite, we say that it is a ξ-play. Note that, given a state s, the determinism
of the arena ensures that there exists exactly one ξ-play π starting in s. Such a
play is called (ξ, s)-play and is denoted by play(ξ, s).

As final remark, an arena is turn-based in case that for all states s, |ag(s)| ≤ 1.
An arena corresponds in the jargon of Modal Logics to a frame representing

the “naked” structure of a model without any connection to the logic. Clearly, to
check formulas, we need to interpret the atomic propositions over the states of
the arena. We call a concurrent game structure the resulting structure.

Definition 2. Concurrent Game Structure. - A concurrent game structure is a
tuple G ,〈A,AP, ap, sI〉, where A,〈Ag,Ac,St, tr〉 is a multi agent concurrent
arena, AP is finite non-empty sets of atomic propositions, sI ∈ St is a designated
initial state, and ap : St → 2AP is a labeling function that maps each state to
the set of atomic propositions true in that state.

As a running example, consider the arenaAS depicted in Figure 1. It represents
a simple scheduler system in which two processes, P and P, can require the
access to a shared resource and an arbiter A is used to solve all conflicts that may
arise. In particular, the arbiter can preempt a process owning the resource to
allow the other one to access to it. The processes have three actions to interact
with the system: r is used to request the resource from the system, when this is



not yet owned, while f releases it, when this is not necessary anymore and d is a
“do-nothing” action in the case it does not want to change the present state. The
arbiter, from its side, has two actions to decide which process has to receive the
resource: 1 for P and 2 for P.

I

1 2

A

PP 7→ dd

PP 7→ rd PP 7→ dr

PP 7→ rr

P

P

7→

d
d

PP 7→ fd

PP 7→fr

PP 7→ dr

P

P

7→

d
d

PP 7→ df

PP 7→rf

PP 7→ rd

A 7→ 1 A 7→ 2

Fig. 1. Scheduler Arena AS .

The whole scheduler system
can reside in the following four
states: I, 1, 2, and A. The idle state
I indicates that both processes do
not own the resource, while i, with
i ∈ {1, 2}, denotes that process Pi
is using it. Finally, the arbitrage
state A represents the situation in
which an action from the arbiter is
required in order to solve a conflict
between contending requests. For
readability reasons, a decision is
graphically represented by an ar-
row 7→ with a sequence of agents
on left hand side and the sequence
of corresponding actions on right
hand side. Finally, the arena is extended to a CGS by using I as initial state
and atomic propositions c, a1, and a2 such that ap(A) = {c}, ap(1) = {a1} and
ap(2) = {a2}.

2.2 Syntax

Strategy Logic extends LTL by introducing two strategy quantifiers 〈〈x〉〉 and
[[x]], and an agent binding (a, x). Informally, these operators can be respectively
read as “there exists a strategy x”, “for all strategies x”, and “bind agent a to
the strategy associated with x”. More formally, for each agent a we consider a
countable set of dedicated variables Vra and with Vr we denote the union of all
such variables. Then, SL well formed formulas are defined as follows.

Definition 3. Syntax. - SL formulas are defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ | ϕ Rϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (a, x)ϕ,

where in (a, x) we assume that x ∈ Vra.

The free agents/variables of a formula ϕ, free(ϕ), are the subset of Ag ∪Vr
containing (i) all agents a for which there is no binding (a, x) before the occurrence
of a temporal operator and (ii) all variables x for which there is a binding (a, x) but
no quantification 〈〈x〉〉 or [[x]]. A formula ϕ without free agents (resp., variables),
i.e., with free(ϕ) ∩Ag = ∅ (resp., free(ϕ) ∩Vr = ∅), is named agent-closed (resp.,
variable-closed). If ϕ is both agent- and variable-closed, it is named sentence. By
snt(ϕ) we denote the set of all sentences that are sub formulas of ϕ.



2.3 Semantics

Similarly as in FOL, the interpretation of a formula makes use of an assignment
function which associates placeholders to some elements of the domain. In
particular, an assignment is a (possibly partial) function χ ∈ Asg , (Vr∪Ag) ⇀
Str mapping variables and agents to strategies. An assignment χ is complete iff
it is defined on all agents, i.e., Ag ⊆ dom(χ). In this case, it directly identifies
the profile χ�Ag given by the restriction of χ to Ag. In addition, χ[e 7→ σ],

with e ∈ Vr ∪ Ag and σ ∈ Str, is the assignment defined on dom(χ[e 7→ σ]) ,
dom(χ) ∪ {e} which differs from χ only in the fact that e is associated with σ.
Formally, χ[e 7→ σ](e) = σ and χ[e 7→ σ](e′) = χ(e′), for all e′ ∈ dom(χ) \ {e}.

The semantics of SL is defined as follows.

Definition 4. Semantics. - Given a CGS G, for all SL formulas ϕ, states
s ∈ St, and an assignment χ ∈ Asg with free(ϕ) ⊆ dom(χ), the modeling relation
G, χ, s |= ϕ is inductively defined as follows.

1. G, χ, s |= p if p ∈ ap(s), with p ∈ AP.
2. Boolean operators are interpreted as usual.
3. For a variable x ∈ Vra, it holds that:

(a) G, χ, s |= 〈〈x〉〉ϕ if there exists an a-coherent strategy σ ∈ Str such that
G, χ[x 7→ σ], s |= ϕ;

(b) G, χ, s |= [[x]]ϕ if for all a-coherent strategies σ ∈ Str it holds that
G, χ[x 7→ σ], s |= ϕ.

4. G, χ, s |= (a, x)ϕ if χ(x) is coherent w.r.t. a and G, χ[a 7→ χ(x)], s |= ϕ.
5. Finally, if the assignment χ is also complete, for all formulas ϕ, ϕ1, and ϕ2,

it holds that:
(a) G, χ, s |= Xϕ if play(χ�Ag, s) |=LTL Xϕ;
(b) G, χ, s |= ϕ1Uϕ2 if play(χ�Ag, s) |=LTL ϕ1Uϕ2;
(c) G, χ, s |= ϕ1Rϕ2 if, play(χ�Ag, s) |=LTL ϕ1Rϕ2.
where |=LTL denotes the usual LTL semantics over paths.

As the verification of a sentence ϕ does not depend on assignments, we omit
them and write G, s |= ϕ, for a generic s, and G |= ϕ when s is the initial state.

In the scheduler example, let ϕ = 〈〈x〉〉〈〈y〉〉〈〈y〉〉[[z]](φ1 ∧ φ2 ∧ φ3) where:

φ1 = (A, x)(P, y)(P, z)G(c⇒ Fa1),

φ2 = (A, x)(P, z)(P, y)G(c⇒ Fa2),

φ3 = [(A, x)(P, y)(P, z)F(c⇒ Xa1) ∨ (A, x)(P, z)(P, y)F(c⇒ Xa2)] .

Informally, the formula ϕ expresses that, whenever a conflict arises, A has a
strategy x to avoid that one of the processes jeopardizes the other one by
preventing the latter to access the resource. Moreover, it requires that a processes
will suddenly get the resource (i.e., a step after the conflict arises).

It is easy to see that ϕ is satisfied in I. Indeed, the arbiter strategy consists in
alternating the access to the resource between the two processes, while they have
to request it at most twice. Then, depending on an initial precedence, when the
first conflict arises one of the two processes obtains the resource in the next state.
Note that ϕ requires a unique strategy for the arbiter in order to coordinate with
both processes independently. Therefore, it cannot be expressed in ATL?.



2.4 Fragments

Strategy Logic allows to freely compose LTL operators, bindings and strategy
quantifiers. Such an expressiveness comes at a price of a NonElementaryTime
complexity for the model checking problem. Therefore, it has been natural to
investigate some syntactical fragments that can exhibit a better complexity.

A quantification prefix over a set V ⊆ Vr is a finite word ℘ ∈ {〈〈x〉〉, [[x]] :
x ∈ V}|V| of length |V| such that each variable x ∈ V occurs just once in ℘.
By Qn(V) we indicate the set of quantification prefixes over V, whereas 〈〈℘〉〉
(resp. [[℘]]) denote the set of variables occurring existentially (resp. universally)
quantified in ℘. Similarly, a binding prefix over V is a word [ ∈ {(a, x) : a ∈
Ag ∧ x ∈ V ∩ Vra}|Ag| such that each agent in Ag occurs exactly once in [. By
Bn we indicate the set of all binding prefixes.

Definition 5. Fragments. - Boolean Goal SL (SL[bg] for short) is defined by
the following grammar:

ϕ ::= LTL(ϕ) | ℘ψ,

ψ ::= [ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ,

where LTL(ϕ) stands for the usual LTL grammar and ℘ quantifies over all free
variables of ψ. The One Goal SL (SL[1g]), Conjunctive Goal SL (SL[cg]) and
Disjunctive Goal SL (SL[dg]) are obtained from SL[bg] by restricting ψ to a
single goal [ϕ, a conjunction of goals and a disjunction of goals, respectively.

The relevance of the Boolean Goal fragment derives from the fact that the
majority of strategic notions (e.g. Nash and Dominant equilibria) resides in this
fragment. However, the precise complexity of the model checking problem is
still an open issue, whereas SL[1g], SL[cg] and SL[dg] have been proved to be
2ExpTime-complete w.r.t. the length of the formula and PTime-complete
w.r.t. the size of the model.

3 Behavioral Semantics

In this section we formalize the behavioral semantics. First of all, we provide an
intuition of the concept of behavioralness with an example.

Consider the 2-agent turn-based CGS in Figure 2, where square states are
ruled by agent α, while circle states by the opponent β. Note that each possible
play consists in a sequence alternating circle and square states. Moreover, α and
β are free to decide the truth value of p and q, respectively, in the next state.

Consider now the formula ϕ′ = 〈〈x〉〉[[y]]〈〈z〉〉((α, x)(β, y)Fq ←→ (α, z)(β, y)Xp).
Clearly, this formula can be satisfied as follows: if the binding (α, x)(β, y) deter-
mines a path that eventually makes q true, then in the first step the strategy z
has to choose the action 0, 1 otherwise. However, since β is free to decide whether
and when q will be true, the agent α cannot respond step by step but has, at the
beginning of the game, to guess about the future moves of β. In particular, we
say that ϕ′, even if satisfiable, is not behavioral.



Roughly, a formula is behavioral if it can be satisfied by assigning strategies
that in all possible histories depend only on what the other strategies do on the
same history. Therefore, behavioralness establishes a locality principle in the
inter-dependence among strategies.

s/∅

s/p s/∅

s/q s/∅ s/q s/∅

0 1

0 1 0 1

Fig. 2. A Critical Structure.

Formally speaking, we need to introduce the
concept of dependence map which is analogous to
the Skolemization procedure in first order logic.
Then, we provide the notion of elementariness, a
general functional correspondent of what behav-
ioral means for strategies. Let ℘ ∈ Qn(V) be a
quantification prefix over a set V ⊆ Vr of vari-
ables. For each variable y ∈ 〈〈℘〉〉, we use ∆(℘, y)
to denote the set of universally quantified variables
x ∈ [[℘]] that precede y in ℘, that are the variable
on which y depends. A valuation of variables over

a set D is a partial function v :Vr⇀D. By ValD(V),V→D we denote the set of
all valuation functions over D whose domain is V.

A dependence map for ℘ over D is a function θ : ValD([[℘]])→ValD(V) satis-
fying the following properties: (i) θ(v)(x)=v(x), for all x∈ [[℘]] and (ii), for all
v, v ∈ ValD([[℘]]) and y∈〈〈℘〉〉, if v�∆(℘,y) = v�∆(℘,y) then θ(v)(y) = θ(v)(y),
where v�∆(℘,y) is the restriction of v to ∆(℘, y). By DMD(℘) we denote the set of all
dependence maps of ℘ over D. Intuitively, Item (i) says that θ takes the same val-
ues of its argument w.r.t. the universal variables in ℘ and Item (ii) ensures that the
value of θ w.r.t. an existential variable y in ℘ only depends on variables in ∆(℘,y).

Due to the fundamental Skolem theorem reported in [19], for each SL formula
ϕ = ℘ψ and CGS G, we have that G |= ϕ iff there exists a dependence map θ ∈
DMStr(℘) such that G, θ(χ), s |= ψ, for all χ ∈ Asg such that [[℘]] ⊆ dom(χ). This
substantially characterizes SL semantics by means of the concept of dependence
map. Then, the behavioral semantics essentially constraints the set of dependence
maps that can be used to satisfy a formula by requiring them to be elementary.

Elementariness is a purely functional notion defined through the concept of
adjoint function. Let D, T, U, and V be four sets, and m : (T→ D)U → (T→ D)V

and m̃ : T → (DU → DV) two functions. Then, m̃ is the adjoint of m if
m̃(t)(ĝ(t))(x) = m(g)(x)(t), for all g ∈ (T → D)U, x ∈ V, and t ∈ T. Thus,
a function m transforming a map of kind (T → D)U into a new map of kind
(T→ D)V has an adjoint m̃ if such a transformation can be done point wisely
w.r.t. the set T. Similarly, from an adjoint function it is possible to determine
the original function unambiguously. Hence, there is a one to one correspondence
between functions admitting an adjoint and the adjoint itself.

The formal meaning of the elementariness of a dependence map over generic
functions follows.

Definition 6. Elementary Dependence Maps. - Let ℘ ∈ Qn(V) be a quantifica-
tion prefix over a set V ⊆ Vr of variables, D and T two sets, and θ ∈ DMT→D(℘)
a dependence map for ℘ over T → D. Then, θ is elementary if it admits an



adjoint function. EDMT→D(℘) denotes the set of all elementary dependence maps
for ℘ over T→ D.

At this point, as mentioned above, we introduce a notion of behavioral satisfi-
ability, in symbols |=B, which requires the elementariness of dependence maps
over strategies.

Definition 7. Behavioral Semantics. - Let G be a CGS and ϕ = ℘ψ an SL
sentence where ψ is agent-closed and ℘ ∈ Qn(free(ψ)). Then, G, s |=B ϕ iff there
exists a dependence map θ ∈ EDMStr(℘) such that G, θ(χ), s |= ψ, for all χ ∈ Asg
such that [[℘]] ⊆ dom(χ).

Observe that, differently from the classic semantics, the quantifications in a prefix
are not treated individually but as an atomic block. This is due to the necessity
of having a strict correlation between the point-wise structure of the quantified
strategies.

4 Alternating-Goal Strategy Logic

We now introduce Alternating-Goal Strategy Logic (SL[ag], for short), which we
prove to have a behavioral semantics and an elementary model-checking problem.

4.1 Syntax

We start introducing the syntax of SL[ag], which extend both SL[cg] and SL[dg]

by allowing to nest the Boolean connectives through a right-linear grammar.

Definition 8 (SL[ag] Syntax). The syntax of SL[ag] is defined as follows:

ϕ ::= LTL(ϕ) | ℘φ,
φ ::= [ϕ | [ϕ ∧ φ | [ϕ ∨ φ,

where ℘ ∈ Qn(free(φ)).

A sentence is principal if it is of the form ℘φ, whereas it is basic in case the
matrix φ generated by the second rule does not contain any further quantification.
Also, with bnd(φ), we mean the set of all bindings occurring in φ.

The introduced logic SL[ag] allows to identify two dual chains of fragments,
called conjunctive-chain and disjunctive-chain, of which SL[cg] and SL[dg] are
the base case. To give an intuition, by using an analogy to the definition of classic
dual hierarchies, each level i in a chain is built recursively by making use of
formulas at level i − 1 of the other one. To make this concept formal, we first
need to introduce some notions that will be also useful in the following.

In the following, by alternating combination over a given set of elements E, we
simply mean a syntactic expression obtained by the grammar η := e | e∧η | e∨η,
where e ∈ E. The set of all these combinations is denoted by AC(E). In addition,
AC(E, k) ⊆ AC(E) indicates the subset of those combinations having the number
of alternation between the connectives ∧ and ∨ bounded by k ∈ N. Finally, sup :



BC(E)→ 2E is the function assigning to each combination η ∈ BC(E) its support
sup(η) ⊆ E, i.e., the set of elements on which it is built. Furthermore, by means of
its overloading sup : BC(E)×N→ 2E, we also denote the set sup(η, k) ⊆ sup(η) of
elements occurring in η at level k ∈ N. As an example, consider the combination
η = e ∧ (e ∨ e ∨ (e ∧ e)) ∈ AC(E, 3) over E = {ei : i ∈ N}. It is immediate to
see that sup(η) = {e, e, e, e, e} and sup(η, 2) = {e, e}.

Observe that every matrix φ of an SL[ag] principal sentence ℘φ is an alter-
nating combination over the set of goals {[ϕ : [ ∈ Bn ∧ ϕ ∈ SL[ag]}. From this
fact, we can easily derive the existence of a whole hierarchy of logics of which
SL[cg] and SL[dg] are just the base case. Indeed, for each k ∈ N, we can define
the logics SL[k-cg] and SL[k-dg] as the fragments of SL[ag] obtained by only
admitting matrices φ starting with a conjunction and a disjunction, respectively,
and having alternation level bounded by k. Note that the sentence used as an
example in Subsection 2.3 is a basic sentence of SL[2-cg].

4.2 Solution

We finally describe a polynomial reduction of the model-checking problem for
SL[ag] to the same problem for SL[1g]. This reduction provides us with both a
proof of the behavioral semantics and a decision procedure whose complexity is not
higher than the one for ATL?, i.e., 2ExpTime in the length of the specification
and PTime in the size of the structure under analysis.

The reduction first consists of a conversion of the original CGS G, on which
we want to behaviorally verify the SL[ag] sentence ϕ = ℘φ, in a new one G?,
in which we can keep track at the same time of a group of plays induced by
ϕ, due to the different strategy bindings inside φ, that share a common history
up to the current moment. Then, we check on the obtained structure a suitable
SL[1g] sentence ϕ? that, within its unique induced play, simulates those ones
of the original sentence ϕ. In particular, every Boolean connective occurring
in φ is replaced by a corresponding fresh agent in the new structure and their
alternation is simply simulated by the one of the strategy quantifiers associated
with these agents by means of the unique binding inside ϕ?.

To better describe the whole reduction, the transformation from G to G? is
itself split in a conversion of the underlying arenas (see Construction 1) followed
by a conversion of the associated labelings and initial states (see Construction 2).

The high-level idea behind the first construction is to build a composed arena
A? in which each original state is paired with an alternating combination of
bindings representing the part of the matrix φ of the original sentence ϕ = ℘φ to
be still verified. The set of new agents is split into two components. First, we have
the free variables of φ, called variable agents, that simulate the behavior of the
original agents by choosing their actions between those of the original structure.
Then, we have a fresh set of agents, one for each alternation level of the matrix,
called numeric agents, that simulates the Boolean connective occurring in φ.
Every one of the latter can either choose to verify a binding belonging to its own
level or to pass the control to the successive agent. Finally, the new transition
function just combines what the original one does for the binding chosen by



the last active numeric agent with the update of the current combination. In
particular, the latter is obtained by restricting the combination to the set of all
bindings that go together in the same determined direction.

Construction 1 (Arena Conversion) From an arena A=〈Ag,Ac,St, tr〉 and
a k-bounded alternating combination ηI ∈ AC(B, k) over a set of bindings B ⊆
Bn(Ag) with k ∈ N, we build the composed arena A? , 〈Ag?,Ac?,St?, tr?〉 as
follows:

– the new agents in Ag? , {x ∈ Vr : ∃[ ∈ B . x ∈ rng([)}∪ [1, k] are represented
by all variables bound by some binding and a range of numbers indicating all
possible levels of alternation in ηI ;

– the new actions in Ac? , Ac ∪ B ∪ {⊕} are split into the original actions
used by the variable agents and the bindings together with a fresh symbol used
by the numeric agents;

– the new states in St? , St × AC(B, k) are pairs of original states and k-
bounded alternating combinations over B indicating which parts of the initial
combination ηI have to be verified from those states on.

For each new state s? = (s, η) ∈ St?, we can describe its set of active new
decisions: for all δ? ∈ Dc?, it holds that δ? ∈ dc?(s?) iff there exists a number
i ∈ [1, k] such that

– the numeric agents from 0 to i are the only ones active on δ?, i.e., [1, i] ⊆
dom(δ?) and ]i, k] ∩ dom(δ?) = ∅;

– all numeric agents up to i− 1 decide to give the control on the bindings to
the successive agent, i.e., δ?(j) = ⊕, for all j ∈ [1, i[;

– the numeric agent i chooses a binding occurring in the alternating combination
η at level i, i.e., δ?(i) ∈ sup(η, i);

– the original decision δ? ◦ δ?(i) obtained by the composition of the actions
chosen by the variable agents with the binding chosen by the numeric agent i
is active on the original state s, i.e., δ? ◦ δ?(i) ∈ dc(s).

To define the new transition function tr?, we first need to introduce the projection
function ↓ : AC(B, k)× 2B → AC(B, k) that, given a combination η ∈ AC(B, k) and
a set of bindings B′ ⊆ B, returns a new combination η↓B′ obtained by deleting
from η all bindings not in B′. At this point, for each state s? = (s, η) ∈ St? and
decision δ? ∈ dc?(s?) with i , max(dom(δ?) ∩ [1, k]), we define the transition
function tr?(δ?)(s?) , (s′, η′) as follows:

– the original state s′ is obtained as the successor of s following the original
decision δ? ◦ δ?(i) obtained by functionally composing the new decision δ?

with the function from Ag to Vr derived from the binding δ?(i), i.e., s′ ,
tr(δ? ◦ δ?(i))(s);

– the combination η′ is obtained from η by removing all bindings whose plays
do not pass through the original state s′, i.e., η′ , η↓{[ ∈ sup(η) : s′ =
tr(δ? ◦ [)(s)}, where δ? ◦ [ is the original decision obtained by composing the
new decision δ? with the function [ : Ag→ Vr derived from the binding.



To complete the conversion of G into the composed G?, we need to define
both the initial state and the labeling of the latter structure. Obviously, the
new initial state just ensures that all bindings are pointing to the original initial
state, since the corresponding plays have to start synchronously. This is done by
associating it with the original alternating combination. As the labeling concerns,
to distinguish the bindings that are active on a given new state from those that
are not, we further label it with the support of the associated combination.

Construction 2 (Structure Conversion) From a CGS G = 〈A,AP, ap, sI〉
and a k-bounded alternating combination ηI ∈ AC(B, k) over a set of bindings
B ⊆ Bn(Ag) with k∈N, we build the composed CGS G? ,〈A?,AP?, ap?, s?I〉 as
follows:

– the arena A? is built as in Construction 1;
– the new atomic propositions in AP? , AP∪B are represented by the original

atomic propositions augmented with the bindings;
– the new labeling function ap? assigns to each new state s? = (s, η) ∈ St?

the set ap?(s?) , ap(s) ∪ sup(η) of original atomic propositions holding in s
together with the bindings in the support of the current combination η;

– the new initial state s?I , (sI , ηI) is constituted by the original initial state
extended with the combination ηI .

Finally, we need to introduce the SL[1g] sentence ϕ? = ℘?[?ψ? to verify
on the composed structure G?. Since this has to simulate the original SL[ag]

sentence ϕ = ℘φ, they have to share the same quantification prefix ℘. Moreover,
we need to suitably quantify the strategies to associate with the numeric agents,
in order to act in place of the Boolean connective inside φ. In the end, the LTL
temporal goal ψ? is directly obtained from φ by replacing all bindings occurring
in it with an apposite check of its presence in the current play.

Construction 3 (Sentence Conversion) From an SL[k-cg] (resp., SL[k-dg])
basic sentence ϕ = ℘φ, with k ∈ N, we obtain the SL[1g] basic sentence ϕ? ,
℘?[?ψ? as follows:

– the new quantification prefix ℘? , ℘℘′ is the extension of the original one ℘
with the strategy quantifications of the numeric agents whose type depends on
the alternation level, i.e., ℘′ ,

∏k
i=1 Qni, with Qni , 〈〈i〉〉, if i ≡ 0 (mod 2)

(resp., i 6≡ 0 (mod 2)), and Qni , [[i]], otherwise;

– the new injective binding [? ,
∏
x∈free(φ)(x, x) ·

∏k
i=1(i, i) simply associates

each variable quantified in ℘? with the new agent having the same name;
– the LTL formula ψ? is derived from φ by substituting each goal [ψ with either

G[∧ψ or G[→ ψ in dependence of the level in which it resides, i.e., ψ? , φ, 0,
where the translation function · : X× N→ LTL is defined as follows:
• [ψ, i,G[∧ψ, if i ≡ 0 (mod 2) (resp., i 6≡ 0 (mod 2)), and [ψ, i,G[→ ψ,

otherwise, where [ ∈ B, ψ ∈ LTL, and i ∈ N;
• Cnhφh, i , Cnhφh, i+ 1, where Cn ∈ {

∧
,
∨
}, φh ∈ X, and i ∈ N;

where X is the set of all matrices of SL[ag].



We are now able to state the fundamental result about the reduction of the
verification problem for SL[ag]. In the following, we shall then show how to use
this reduction as a crucial building block on which to base the model-checking
procedure for this fragment of SL.

Theorem 1 (SL[ag] Reduction). Let G be a CGS and ϕ = ℘φ an SL[ag]

basic sentence. Also, let G? be the composed CGS built in Construction 2, where
ηI ∈ AC(bnd(φ)) is the alternating combination over the set of bindings occurring
in the matrix φ obtained by removing in the latter the LTL temporal part, and ϕ?

the SL[1g] basic sentence obtained in Construction 3. Then, G |=B ϕ iff G? |= ϕ?.

Proof. First observe that, once the if direction is proved, the only if direction
immediately follows. Indeed, suppose by contradiction that G |=B ϕ but G? 6|= ϕ?.
Then, we have that G? |= ¬ϕ?, so, G? |= (¬ϕ)?.1 At this point, by the if direction,
we have G |=B ¬ϕ, but this is impossible.

To prove that G? |= ϕ? implies G |=B ϕ, we simply show how to construct an
elementary dependence map θ for the latter modeling relation starting from the
one θ? of the former. Obviously, to do this we make use of the fact that SL[1g]

is behavioral, i.e., G? |=B ϕ
?.

As first thing, we need a partial function ext : Hst ⇀ Hst?, which maps
each history in the original structure G used to verify the sentence ϕ to the
corresponding one in the composed structure G?, where the extension of the
original states with the alternating combinations is done coherently with the
decision chosen by the agents. Formally, we have that:

1. the original initial state sI is mapped to the new initial state (sI , ηI), i.e.,
sI ∈ dom(ext) and ext(sI) , (sI , ηI);

2. for each original history ρ ∈ dom(ext) already mapped to the new history
ρ? , ext(ρ) having s? = (s, η) , lst(ρ?) as last state and for all new decisions
δ? ∈ dc?(s?) having i , max(dom(δ?) ∩ N) as active numeric agent, it holds
that ρ · s′ ∈ dom(ext) and ext(ρ · s′) , ρ? · (s′, η′), where:
– the original state s′ is obtained as the successor of s following the original

decision δ? ◦ δ?(i), i.e., s′ , tr(δ? ◦ δ?(i))(s);
– the combination η′ is obtained from η by removing all bindings whose

plays do not pass through the the original state s′, i.e., η′ , η↓{[ ∈ sup(η)
: s′ = tr(δ? ◦ [)(s)}.

Now, we can easily define the elementary dependence map θ by means of the
adjoint functions as follows: θ̂(ρ) , θ̂?(ext(ρ)), for all ρ ∈ dom(ext). Observe that,

we do not need to prescribe any constraint on the value θ̂(ρ), for ρ ∈ Hst\dom(ext),
since these histories are not used in the verification of the sentence.

At this point, it just remains to prove that G, θ(χ), sI |= φ, for all χ ∈ Asg
such that dom(χ) = [[℘]]. We leave this as an exercise.

By exploiting the above result, we can derive that classic and behavioral
semantics for SL[ag] are equivalent, as stated in the following corollary.

1 By ¬φ, we actually mean the sentence in positive normal form equivalent to it.



Corollary 1 (SL[ag] Behavioral Semantics). Let G be a CGS and ϕ an
SL[ag] sentence. Then, G |= ϕ iff G |=B ϕ.

Proof. The proof simply proceeds by structural induction on the nesting of
principal sentences. Here, we just show the base case, where ϕ = ℘φ is a basic
sentence, and leave the easier inductive case to the reader. The if direction
follows by definition of behavioral semantics. For the only if direction, we make
use of a reasoning similar to the one done we have done in the previous theorem.
Suppose by contradiction that G |= ϕ but G 6 |=B ϕ. Then, by Theorem 1, we have
that G? 6|= ϕ?, so, G? |= ¬ϕ?, which in turn implies G? |= (¬ϕ)?. By using again
the previous theorem, we have G |=B ¬ϕ. Thus, by the if direction, we derive
that G |= ¬ϕ, which is impossible.

By inductively applying the reduction previously described on every principal
subsentence of a given sentence of interest, we can reduce the model-checking
problem of SL[ag] to a linear number of calls to the already known SL[1g] model-
checking procedure [19,22,23]. Observe that, at each call, the arena conversion
always applies to the original one. Instead, the structure conversion applies to a
CGS augmented with a fresh proposition for each subsentence already analyzed.
As for the CTL? model-checking procedure, the extra propositions only cost a
linear factor in the computational complexity of the analyzed problem. From
this, the following result directly derives.

Theorem 2 (Alternating Goal Complexity). The model-checking problem
of SL[ag] is 2ExpTime-complete in the length of the specification and PTime-
complete in the size of the structure.

Proof. As the lower bounds concern, the related results derive directly from the
ATL? ones. Indeed, SL[ag] subsumes SL[1g], which in turn subsumes ATL?.

For the upper bound, consider a CGS G and an SL[ag] principal sentence
ϕ = ℘φ. If ϕ is basic, by exploiting the result of Theorem 1, we have that G |= ϕ
iff G? |= ϕ?. Therefore, the time complexity of the model-checking problem for ϕ
against G is the sum of the time required by the reduction plus that of the same
problem for ϕ? against G?. Both the time for building G? and its size are linear
in the size of G and exponential in the number of bindings occurring in ϕ. The
building of ϕ?, instead, is simply linear in the length of ϕ. The time complexity
of the model checking for SL[1g], is known to be 2ExpTime-complete in the
length of ϕ? and PTime-complete in the size of G? [19]. Thus, the thesis for
this case immediately follows.

If ϕ is not basic, we inductively solve the problem for all the immediate
principal subsentences. Then, we enrich the labeling of G with fresh atomic
propositions indicating whether a given subsentence holds in a certain state.
Finally, we apply the procedure for the previous case on the new basic sentence
ϕ′ obtained from ϕ by substituting each immediate principal subsentence with
the related atomic proposition. Hence, the thesis follows in this case too.



5 Discussion

In a recent paper titled “What Makes ATL? Decidable? A Decidable Fragment of
Strategy Logic” [19], it has been argued for the first time that ATL? enjoys several
positive properties thanks to its intrinsic behavioral semantics. In effect, several
attempts of extending ATL? suffer from the fact that a choice of a strategy may
depend on future strategies as well as on those over counterfactual plays. This is
the case for both versions of Strategy Logic introduced in [6, 7] and [23].

As extensions of ATL? like SL are indispensable to represent key game-
theoretic properties such as Nash equilibria and sub-game perfect equilibria2,
while the non-behavioral semantics is problematic to be implemented in practice,
great effort has been devoted to find powerful fragments of SL for which the
behavioral semantics suffices to evaluate the truth value of a formula.

Chronologically, the Boolean-Goal (SL[bg]) and the One-Goal (SL[1g]) frag-
ments [19, 20], are the first two ones that have been investigated in this respect.
It has been shown that, while SL[1g] enjoys all the main theoretic-properties of
ATL?, including the behavioralness, the subsuming fragment SL[bg] does not.
Notably, the model-checking problem for SL[1g] is 2ExpTime-complete (as for
ATL?), while for SL[bg] the best existing algorithm requires non-elementary time.
This has borne out the conjecture that dealing with a fragment holding a behav-
ioral semantics is a sufficient condition to ensure an elementary procedure for such
a decision problem. To enforce this, in [21], the Conjunctive-Goal (SL[cg]) and
the Disjunctive-Goal (SL[dg]) fragments of SL[bg] have been introduced. Indeed,
it has been shown that these logics strictly subsume SL[1g], are behavioral, and
still retain a 2ExpTime-complete model-checking problem.

In this paper, we show that SL[cg] and SL[dg] are just at the bottom place
of a hierarchy of behavioral fragments strictly contained in SL[bg] and that the
conjecture still holds for all of them. Formally, we introduce Alternating-Goal
Strategy Logic (SL[ag]) that imposes a precise alternation over the nesting of the
Boolean connectives in SL[bg]. Precisely, in SL[ag], whenever there is a conjunc-
tion (disjunction), at most one of its conjunct (resp., disjunct) can be a disjunction
(resp, conjunction). Note that allowing two instead of one conjunct/disjunct in
the above definition would fall in a non-behavioral semantics [19].

As a future work, there are two lines of research we would like to follow. One
is to prove the truth of the mentioned conjecture and possibly investigate whether
it is also a necessary condition. The other one (also related to the necessary
part of the conjecture) is to study the exact complexity of the model checking
question of SL[bg], left open for some years now.

Acknowledgments

We thank an anonymous referee of the workshop LAMAS 2014 for having inspired
us to introduce SL[ag].

2 Note that sub-game perfect equilibria cannot be represented in the restricted turn-
based two-player Strategy Logic version of Chatterjee, Henzinger and Piterman [10].



References

1. T. Ågotnes, V. Goranko, and W. Jamroga. Alternating-Time Temporal Logics with
Irrevocable Strategies. In TARK’07, pages 15–24, 2007.

2. T. Ågotnes and D. Walther. A Logic of Strategic Ability Under Bounded Memory.
JLLI, 18(1):55–77, 2009.

3. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic.
JACM, 49(5):672–713, 2002.

4. T. Brihaye, A. Da Costa Lopes, F. Laroussinie, and N. Markey. ATL with Strategy
Contexts and Bounded Memory. In LFCS’09, LNCS 5407, pages 92–106. Springer,
2009.

5. P. Čermák, A. Lomuscio, F. Mogavero, and A. Murano. MCMAS-SLK: A Model
Checker for the Verification of Strategy Logic Specifications. In CAV’14, LNCS
8559, pages 524–531. Springer, 2014.

6. K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. In CONCUR’07,
LNCS 4703, pages 59–73. Springer, 2007.

7. K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. IC, 208(6):677–693,
2010.

8. E.A. Emerson and J.Y. Halpern. “Sometimes” and “Not Never” Revisited: On
Branching Versus Linear Time. JACM, 33(1):151–178, 1986.

9. B. Finkbeiner and S. Schewe. Coordination Logic. In CSL’10, LNCS 6247, pages
305–319. Springer, 2010.

10. D. Fisman, O. Kupferman, and Y. Lustig. Rational Synthesis. In TACAS’10, LNCS
6015, pages 190–204. Springer, 2010.

11. W. Jamroga and A. Murano. On Module Checking and Strategies. In AAMAS’14,
pages 701–708. International Foundation for Autonomous Agents and Multiagent
Systems, 2014.

12. W. Jamroga and W. Penczek. Specification and Verification of Multi-Agent Systems.
In ESSLLI’11, LNCS 7388, pages 210–263. Springer, 2011.

13. W. Jamroga and W. van der Hoek. Agents that Know How to Play. FI, 63(2-3):185–
219, 2004.

14. O. Kupferman, M.Y. Vardi, and P. Wolper. Module Checking. IC, 164(2):322–344,
2001.

15. A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A Model Checker for the
Verification of Multi-Agent Systems. In CAV’09, LNCS 5643, pages 682–688.
Springer, 2009.

16. A. Lomuscio and F. Raimondi. MCMAS: A Model Checker for Multi-agent Systems.
In TACAS’06, LNCS 3920, pages 450–454. Springer, 2006.

17. A. Lomuscio and F. Raimondi. Model Checking Knowledge, Strategies, and Games
in Multi-Agent Systems. In AAMAS’06, pages 161–168. International Foundation
for Autonomous Agents and Multiagent Systems, 2006.

18. A.D.C. Lopes, F. Laroussinie, and N. Markey. ATL with Strategy Contexts:
Expressiveness and Model Checking. In FSTTCS’10, LIPIcs 8, pages 120–132.
Leibniz-Zentrum fuer Informatik, 2010.

19. F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. Reasoning About Strategies:
On the Model-Checking Problem. Technical report, arXiv, 2011.

20. F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. What Makes ATL? Decidable?
A Decidable Fragment of Strategy Logic. In CONCUR’12, LNCS 7454, pages 193–
208. Springer, 2012.



21. F. Mogavero, A. Murano, and L. Sauro. On the Boundary of Behavioral Strategies.
In LICS’13, pages 263–272. IEEE Computer Society, 2013.

22. F. Mogavero, A. Murano, and L. Sauro. Strategy Games: A Renewed Framework.
In AAMAS’14, pages 869–876. International Foundation for Autonomous Agents
and Multiagent Systems, 2014.

23. F. Mogavero, A. Murano, and M.Y. Vardi. Reasoning About Strategies. In
FSTTCS’10, LIPIcs 8, pages 133–144. Leibniz-Zentrum fuer Informatik, 2010.

24. F. Mogavero, A. Murano, and M.Y. Vardi. Relentful Strategic Reasoning in
Alternating-Time Temporal Logic. In LPAR’10, LNAI 6355, pages 371–387.
Springer, 2010.

25. S. Pinchinat. A Generic Constructive Solution for Concurrent Games with Expres-
sive Constraints on Strategies. In ATVA’07, LNCS 4762, pages 253–267. Springer,
2007.

26. A. Pnueli. The Temporal Logic of Programs. In FOCS’77, pages 46–57. IEEE
Computer Society, 1977.

27. L. Sauro and S. Villata. Dependency in Cooperative Boolean Games. JLC,
23(2):425–444, 2013.

28. S. Schewe. ATL? Satisfiability is 2ExpTime-Complete. In ICALP’08, LNCS 5126,
pages 373–385. Springer, 2008.

29. P.Y. Schobbens. Alternating-Time Logic with Imperfect Recall. 85(2):82–93, 2004.
30. W. van der Hoek, W. Jamroga, and M. Wooldridge. A Logic for Strategic Reasoning.

In AAMAS’05, pages 157–164. Association for Computing Machinery, 2005.
31. W. van der Hoek and M. Wooldridge. Cooperation, Knowledge, and Time:

Alternating-Time Temporal Epistemic Logic and its Applications. SL, 75(1):125–157,
2003.

32. D. Walther, W. van der Hoek, and M. Wooldridge. Alternating-Time Temporal
Logic with Explicit Strategies. In TARK’07, pages 269–278, 2007.


